Skip to main content

Conformational Dynamics of Intracellular Tau Protein Revealed by CD and SAXS

  • Protocol
  • First Online:
Book cover Tau Protein

Abstract

A native conformation of a protein is essential for its biological role. In certain conditions, some proteins show non-native conformations, leading to aggregation, which in turn may produce severe pathologies. Such physiological conditions are classified as protein misfolding diseases. Alzheimer’s disease (AD) is the most common form of dementia. Extracellular senile plaques formed by Amyloid β and intracellular aggregates formed by microtubule-associated protein Tau (MAPT) are the hallmarks of AD. Physiological role of MAPT is to maintain the integrity and stability of microtubules, however it tends to self-aggregate forming intracellular paired helical filaments (PHFs) during AD. MAPT is also subjected to various post-translational modifications such as phosphorylation, glycosylation, truncation, and acetylation. Being natively unfolded, MAPT is prone to full characterization at atomic level. Small-angle X-ray scattering (SAXS) is often applied in combination with other biophysical methods, like nuclear magnetic resonance (NMR), circular dichroism (CD), fluorescence spectroscopy, analytical ultracentrifugation (AUC), or dynamic light scattering (DLS) to characterize natively unfolded systems. Here we describe the practical aspects of MAPT characterization by SAXS and CD in detail as well as outline the inferred structural and functional implications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hirokawa N (1988) Tau proteins: the molecular structure and mode of binding on microtubules. J Cell Biol 107(4):1449–1459

    Article  CAS  PubMed  Google Scholar 

  2. Hirokawa N, Takemura R (2005) Molecular motors and mechanisms of directional transport in neurons. Nat Rev Neurosci 6(3):201–214

    Article  CAS  PubMed  Google Scholar 

  3. Mandelkow E, von Bergen M, Biernat J et al (2007) Structural principles of tau and the paired helical filaments of Alzheimer’s disease. Brain Pathol 17(1):83–90

    Article  CAS  PubMed  Google Scholar 

  4. Illenberger S, Zheng-Fischhofer Q, Preuss U et al (1998) The endogenous and cell cycle-dependent phosphorylation of tau protein in living cells: implications for Alzheimer’s disease. Mol Biol Cell 9(6):1495–1512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Couchie D, Mavilia C, Georgieff IS et al (1992) Primary structure of high molecular weight tau present in the peripheral nervous system. Proc Natl Acad Sci 89(10):4378–4381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goedert M, Wischik CM, Crowther RA et al (1988) Cloning and sequencing of the cDNA encoding a core protein of the paired helical filament of Alzheimer disease: identification as the microtubule-associated protein tau. Proc Natl Acad Sci 85(11):4051–4055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Binder LI, Guillozet-Bongaarts AL, Garcia-Sierra F et al (2005) Tau, tangles, and Alzheimer’s disease. Biochim Biophys Acta 1739(2–3):216–223

    Article  CAS  PubMed  Google Scholar 

  8. Garcia ML, Cleveland DW (2001) Going new places using an old MAP: tau, microtubules and human neurodegenerative disease. Curr Opin Cell Biol 13(1):41–48

    Article  CAS  PubMed  Google Scholar 

  9. Glatz DC, Rujescu D, Tang Y et al (2006) The alternative splicing of tau exon 10 and its regulatory proteins CLK2 and TRA2-BETA1 changes in sporadic Alzheimer’s disease. J Neurochem 96(3):635–644

    Article  CAS  PubMed  Google Scholar 

  10. von Bergen M, Barghorn S, Li L et al (2001) Mutations of tau protein in frontotemporal dementia promote aggregation of paired helical filaments by enhancing local beta-structure. J Biol Chem 276(51):48165–48174

    Google Scholar 

  11. von Bergen M, Friedhoff P, Biernat J et al (2000) Assembly of tau protein into Alzheimer paired helical filaments depends on a local sequence motif (306VQIVYK311) forming beta structure. Proc Natl Acad Sci 97(10):5129–5134

    Article  Google Scholar 

  12. Mukrasch MD (2005) Sites of tau important for aggregation populate-structure and bind to microtubules and polyanions. J Biol Chem 280(26):24978–24986

    Article  CAS  PubMed  Google Scholar 

  13. von Bergen M, Barghorn S, Biernat J et al (2005) Tau aggregation is driven by a transition from random coil to beta sheet structure. Biochim Biophys Acta (BBA) 1739(2–3):158–166

    Article  Google Scholar 

  14. von Bergen M, Barghorn S, Jeganathan S et al (2006) Spectroscopic approaches to the conformation of tau protein in solution and in paired helical filaments. Neurodegener Dis 3(4–5):197–206

    Article  Google Scholar 

  15. von Bergen M, Barghorn S, Müller SA et al (2006) The core of tau-paired helical filaments studied by scanning transmission electron microscopy and limited proteolysis. Biochemistry 45(20):6446–6457

    Article  Google Scholar 

  16. Chen J, Kanai Y, Cowan NJ et al (1992) Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360(6405):674–677

    Article  CAS  PubMed  Google Scholar 

  17. Magnani E, Fan J, Gasparini L et al (2007) Interaction of tau protein with the dynactin complex. EMBO J 26(21):4546–4554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Butner KA (1991) Tau protein binds to microtubules through a flexible array of distributed weak sites. J Cell Biol 115(3):717–730

    Article  CAS  PubMed  Google Scholar 

  19. Al-Bassam J, Ozer RS, Safer D et al (2002) MAP2 and tau bind longitudinally along the outer ridges of microtubule protofilaments. J Cell Biol 157(7):1187–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Santarella RA, Skiniotis G, Goldie KN et al (2004) Surface-decoration of microtubules by human tau. J Mol Biol 339(3):539–553

    Article  CAS  PubMed  Google Scholar 

  21. Mukrasch MD, Bibow S, Korukottu J et al (2009) Structural polymorphism of 441-residue tau at single residue resolution. PLoS Biol 7(2):e34

    Article  PubMed  Google Scholar 

  22. Mylonas E, Hascher A, Bernadó P et al (2008) Domain conformation of tau protein studied by solution small-angle x-ray scattering. Biochemistry 47(39):10345–10353

    Article  CAS  PubMed  Google Scholar 

  23. Shkumatov AV, Chinnathambi S, Mandelkow E et al (2011) Structural memory of natively unfolded tau protein detected by small-angle x-ray scattering. Proteins 79(7):2122–2131

    Article  CAS  PubMed  Google Scholar 

  24. Schwalbe M, Ozenne V, Bibow S et al (2014) Predictive atomic resolution descriptions of intrinsically disordered hTau40 and α-synuclein in solution from NMR and small angle scattering. Structure 22(2):238–249

    Article  CAS  PubMed  Google Scholar 

  25. Bernadó P, Svergun DI (2012) Analysis of intrinsically disordered proteins by small-angle x-ray scattering. In: Intrinsically disordered protein analysis. Springer Science + Business Media, Berlin. doi:10.1007/978-1-4614-3704-8_7

    Google Scholar 

  26. Doniach S (2001) Changes in biomolecular conformation seen by small angle x-ray scattering. Chem Rev 101(6):1763–1778

    Article  CAS  PubMed  Google Scholar 

  27. Durand D, Vivès C, Cannella D et al (2010) NADPH oxidase activator p67phox behaves in solution as a multidomain protein with semi-flexible linkers. J Struct Biol 169(1):45–53

    Article  CAS  PubMed  Google Scholar 

  28. Ozenne V, Bauer F, Salmon L et al (2012) Flexible-meccano: a tool for the generation of explicit ensemble descriptions of intrinsically disordered proteins and their associated experimental observables. Bioinformatics 28(11):1463–1470

    Article  CAS  PubMed  Google Scholar 

  29. Pelikan M, Hura G, Hammel M (2009) Structure and flexibility within proteins as identified through small angle x-ray scattering. Gen Physiol Biophys 28(2):174–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Różycki B, Kim YC, Hummer G (2011) SAXS ensemble refinement of ESCRT-III CHMP3 conformational transitions. Structure 19(1):109–116

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang S, Blachowicz L, Makowski L et al (2010) Multidomain assembled states of Hck tyrosine kinase in solution. Proc Natl Acad Sci 107(36):15757–15762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zheng W, Tekpinar M (2011) Accurate flexible fitting of high-resolution protein structures to small-angle x-ray scattering data using a coarse-grained model with implicit hydration shell. Biophys J 101(12):2981–2991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bernadó P, Mylonas E, Petoukhov MV et al (2007) Structural characterization of flexible proteins using small-angle x-ray scattering. J Am Chem Soc 129(17):5656–5664

    Article  PubMed  Google Scholar 

  34. Kikhney AG, Svergun DI (2015) A practical guide to small angle x-ray scattering (SAXS) of flexible and intrinsically disordered proteins. FEBS Lett 589(19 Pt A):2570–2577

    Article  CAS  PubMed  Google Scholar 

  35. Jeganathan S, Chinnathambi S, Mandelkow E-M et al (2012) Conformations of microtubule-associated protein tau mapped by fluorescence resonance energy transfer. In: Amyloid proteins, Methods in molecular biology. Springer, Berlin. doi:10.1007/978-1-61779-551-0_7

  36. Jeganathan S, Hascher A, Chinnathambi S et al (2008) Proline-directed pseudo-phosphorylation at AT8 and PHF1 epitopes induces a compaction of the paperclip folding of tau and generates a pathological (MC-1) conformation. J Biol Chem 283(46):32066–32076

    Article  CAS  PubMed  Google Scholar 

  37. Jeganathan S, von Bergen M, Brutlach H et al (2006) Global hairpin folding of tau in solution. Biochemistry 45(7):2283–2293

    Article  CAS  PubMed  Google Scholar 

  38. Li L, von Bergen M, Mandelkow EM et al (2002) Structure, stability, and aggregation of paired helical filaments from tau protein and FTDP-17 mutants probed by tryptophan scanning mutagenesis. J Biol Chem 277(44):41390–41400

    Article  CAS  PubMed  Google Scholar 

  39. von Bergen M, Li L, Mandelkow E (2004) Intrinsic fluorescent detection of tau conformation and aggregation. In: Amyloid proteins. Springer Science + Business Media, Berlin. doi:10.1385/1-59259-874-9:175

  40. Schweers O, Schonbrunn-Hanebeck E, Marx A et al (1994) Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. J Biol Chem 269(39):24290–24297

    CAS  PubMed  Google Scholar 

  41. Frost B, Ollesch J, Wille H et al (2008) Conformational diversity of wild-type tau fibrils specified by templated conformation change. J Biol Chem 284(6):3546–3551

    Article  PubMed  Google Scholar 

  42. Antzutkin ON, Iuga D, Filippov AV et al (2012) Hydrogen bonding in Alzheimer’s amyloid-beta fibrils probed by 15N{17O} REAPDOR solid-state NMR spectroscopy. Angew Chem Int Ed Engl 51(41):10289–10292

    Article  CAS  PubMed  Google Scholar 

  43. López Deber MP, Hickman DT, Nand D et al (2014) Engineering amyloid-like assemblies from unstructured peptides via site-specific lipid conjugation. PLoS One 9(9):e105641

    Article  PubMed  PubMed Central  Google Scholar 

  44. Jeganathan S, von Bergen M, Mandelkow E-M et al (2008) The natively unfolded character of tau and its aggregation to Alzheimer-like paired helical filaments. Biochemistry 47(40):10526–10539

    Article  CAS  PubMed  Google Scholar 

  45. Lichtenberg-Kraag B, Mandelkow EM, Biernat J et al (1992) Phosphorylation-dependent epitopes of neurofilament antibodies on tau protein and relationship with Alzheimer tau. Proc Natl Acad Sci 89(12):5384–5388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Skrabana R, Kontsek P, Mederlyova A et al (2004) Folding of Alzheimer’s core PHF subunit revealed by monoclonal antibody 423. FEBS Lett 568(1–3):178–182

    Article  CAS  PubMed  Google Scholar 

  47. Künze G, Barré P, Scheidt HA et al (2012) Binding of the three-repeat domain of tau to phospholipid membranes induces an aggregated-like state of the protein. Biochim Biophys Acta 1818(9):2302–2313

    Article  PubMed  PubMed Central  Google Scholar 

  48. Maeda S, Sahara N, Saito Y et al (2007) Granular tau oligomers as intermediates of tau filaments. Biochemistry 46(12):3856–3861

    Article  CAS  PubMed  Google Scholar 

  49. Ciasca G, Campi G, Battisti A et al (2012) Continuous thermal collapse of the intrinsically disordered protein tau is driven by its entropic flexible domain. Langmuir 28(37):13405–13410

    Article  CAS  PubMed  Google Scholar 

  50. Jones EM, Dubey M, Camp PJ et al (2012) Interaction of tau protein with model lipid membranes induces tau structural compaction and membrane disruption. Biochemistry 51(12):2539–2550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ghoshal N, Garcia-Sierra F, Fu Y et al (2001) Tau-66: evidence for a novel tau conformation in Alzheimer’s disease. J Neurochem 77(5):1372–1385

    Article  CAS  PubMed  Google Scholar 

  52. Jicha GA, Bowser R, Kazam IG et al (1997) Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res 48(2):128–132

    Article  CAS  PubMed  Google Scholar 

  53. Hanahan D, Jessee J, Bloom FR (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol 204:63–113

    Article  CAS  PubMed  Google Scholar 

  54. Jacques DA, Trewhella J (2010) Small-angle scattering for structural biology–expanding the frontier while avoiding the pitfalls. Protein Sci 19(4):642–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Skou S, Gillilan RE, Ando N (2014) Synchrotron-based small-angle x-ray scattering of proteins in solution. Nat Protoc 9(7):1727–1739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Guinier A (1939) La diffraction des rayons X aux très petits angles; application à l’étude de phénomènes ultramicroscopiques. Ann Phys (Paris) 1939(12):161–237

    Google Scholar 

  57. Perez J, Vachette P, Russo D et al (2001) Heat-induced unfolding of neocarzinostatin, a small all-beta protein investigated by small-angle x-ray scattering. J Mol Biol 308(4):721–743

    Article  CAS  PubMed  Google Scholar 

  58. Greenfield NJ (2007) Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc 1(6):2876–2890

    Article  Google Scholar 

  59. Weeks SD, Baranova EV, Heirbaut M et al (2014) Molecular structure and dynamics of the dimeric human small heat shock protein HSPB6. J Struct Biol 185(3):342–354

    Article  CAS  PubMed  Google Scholar 

  60. Varadi M, Kosol S, Lebrun P et al (2014) pE-DB: a database of structural ensembles of intrinsically disordered and of unfolded proteins. Nucleic Acids Res 42(Database issue):D326–D335

    Article  CAS  PubMed  Google Scholar 

  61. Zoll S, Schlag M, Shkumatov AV et al (2012) Ligand-binding properties and conformational dynamics of autolysin repeat domains in staphylococcal cell wall recognition. J Bacteriol 194(15):3789–3802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Hirekodathakallu V. Thulasiram (CSC0130) for his excellent Molecular Biology Laboratory (MBL) facility at the CSIR-NCL, Pune. Tau constructs were kindly gifted by Prof. Roland Brandt from University of Osnabruck, Germany and Prof. Jeff Kuret from Ohio State University College of Medicine, USA. N.V.G. acknowledges research fellowship from University of Grant Commission (UGC) by government of India. This project is supported in part by grants from the DST-SERB SB/YS/LS-355/2013 and 12th 5-year plan CSIR-Network Project BSC0115. The authors acknowledge Dr. Ranjan Singh, Shweta Sonawane, Dr. Yann Stercks, and Dr. Ritika Sethi for proofreading the manuscript and for useful comments. The authors have declared no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Alexander V. Shkumatov or Subashchandrabose Chinnathambi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gorantla, N.V., Shkumatov, A.V., Chinnathambi, S. (2017). Conformational Dynamics of Intracellular Tau Protein Revealed by CD and SAXS. In: Smet-Nocca, C. (eds) Tau Protein. Methods in Molecular Biology, vol 1523. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6598-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6598-4_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6596-0

  • Online ISBN: 978-1-4939-6598-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics