Skip to main content

Freeze-Fracture Electron Microscopy on Domains in Lipid Mono- and Bilayer on Nano-Resolution Scale

  • Protocol
  • First Online:
Liposomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1522))

Abstract

Freeze-fracture electron microscopy (FFEM) as a cryofixation, replica, and transmission electron microscopy technique is unique in membrane bilayer and lipid monolayer research because it enables us to excess and visualize pattern such as domains in the hydrophobic center of lipid bilayer as well as the lipid/gas interface of lipid monolayer. Since one of the preparation steps of this technique includes fracturing the frozen sample and since during this fracturing process the fracture plane follows the area of weakest forces, these areas are exposed allowing us to explore pattern built up by lipids and/or intrinsic proteins but also initiated by peptides, drugs, and toxins reaching into these normally hard to access areas. Furthermore, FFEM as a replica technique is applicable to objects of a large size range and combines detailed imaging of fine structures down to nano-resolution scale within images of larger biological or artificial objects up to several tens of micrometers in size.

Biological membranes consist of a multitude of components which can self-organize into rafts or domains within the fluid bilayer characterized by lateral inhomogeneities in chemical composition and/or physical properties. These domains seem to play important roles in signal transduction and membrane traffic. Furthermore, lipid domains are important in health and disease and make an interesting target for pharmacological approaches in cure and prevention of diseases such as Alzheimer, Parkinson, cardiovascular and prion diseases, systemic lupus erythematosus, and HIV. As a cryofixation technique, FFEM is a very powerful tool to capture such domains in a probe-free mode and explore their dynamics on a nano-resolution scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hall CBE (1950) A low temperature replica method for electron microscopy. J Appl Phys 21:61–62

    Article  CAS  Google Scholar 

  2. Steere RL (1957) Electron microscopy of structural detail in frozen biological specimens. J Biophys Biochem Cytol 3:45–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moor H, Mühlethaler K (1963) Fine structure in frozen-etched yeast cells. J Cell Biol 17:609–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pinto da Silva P, Branton D (1970) Membrane splitting in freeze-etching: Covalently Bound Ferritin as a Membrane Marker. J Cell Biol 45:598–605

    Article  CAS  PubMed  Google Scholar 

  5. Branton D (1971) Freeze-etching studies of membrane structures. Phil Trans Roy Soc Lond B 261:133–138

    Article  CAS  Google Scholar 

  6. Singer SJ, Nicolson GL (1972) The fluid mosaic model of the structure of cell membranes. Science 175:720–731

    Article  CAS  PubMed  Google Scholar 

  7. Bullivant S (1974) Freeze-etching technique applied to biological membranes. Phil Trans R Soc London 268:5–14

    Article  CAS  Google Scholar 

  8. Sternberg B (1992) Freeze-fracture electron microscopy of liposomes. In: Gregoriadis G (ed) Liposome Technology, 2nd edn. CRC Press Vol. I, Boca Raton, Ann Arbor, London, Tokyo, pp 363–383

    Google Scholar 

  9. Sternberg B (1996) Liposomes as a model for membrane structures and structural transformations: A liposome album. In: Barenholz Y (ed) Handbook of Nonmedical Applications of Liposomes. From gene delivery and diagnostics to ecology, (Lasic, D.D. CRC Press Boca Raton, New York, London, Tokyo, pp 271–297

    Google Scholar 

  10. Sternberg B (1998) Ultrastructural morphology of cationic liposome-DNA complexes for gene therapy. In: Lasic DD, Papahadjopoulos DP (eds) Medical Applications of Liposomes. Elsevier Amsterdam. Lausanne, New York, Oxford, Shannon, Singapore, Tokyo, pp 395–427

    Chapter  Google Scholar 

  11. Angelova A, Angelov B, Papahadjopoulos-Sternberg B, Bourgaux C, Couvreur P (2005) Protein driven pattering of self-assembled cubosomic nanostructures: Long oriented nanoridges. J Phys Chem B 109(8):3089–3093

    Article  CAS  PubMed  Google Scholar 

  12. Angelov B, Angelova A, Papahadjopoulos-Sternberg B, Lesieur S, Sadoc J-F, Ollivon M, Couvreur P (2006) Detailed structure of dimond-type lipid cubic nanoparticles. J Am Chem Soc 128(17):5813–5817

    Article  CAS  PubMed  Google Scholar 

  13. Brancewicz C, Rasmussen DH, Papahadjopoulos-Sternberg B (2006) Hydrophobic gas bubble formation in Definity®: A freeze-fracture electron microscopy study. J Disper Sci Technol 27:761–765

    Article  CAS  Google Scholar 

  14. Sternberg B, Gale P, Watts A (1989) The effect of temperature and protein content on the dispersive properties of bR from H.halobium in reconstituted DMPC complexes free of endogenous purple membrane lipids: a freeze-fracture electron microscopy study. Biochim Biophys Acta 980:117–126

    Article  CAS  Google Scholar 

  15. Sternberg B, Hostis CL, Whiteway CA, Watts A (1992) The essential role of specific Halobacterium halobium polar lipids in 2D-array formation of bacteriorhodopsin. Biochim Biophys Acta 1108:21–30

    Article  CAS  PubMed  Google Scholar 

  16. Sternberg B, Watts A, Cejka Z (1993) Lipid induced modulation of the protein packing in two-dimensional crystals of Bacteriorhodopsin. J Struct Biol 110:196–204

    Article  CAS  Google Scholar 

  17. Lee Kan P, Papahadjopoulos-Sternberg B, Wong D, Waigh RD, Watson DG, Gray AI, McCarthy D, McAllister M, Schätzlein AG, Uchegbu IF (2004) Highly hydrophilic fused aggregates (microsponges) from a C12 Spermine Bolaamphiphile. J Phys Chem B 108:8129–8135

    Article  CAS  Google Scholar 

  18. Qu X, Khutoryanskiy VV, Stewart A, Rahman S, Papahadjopoulos-Sternberg B, Dufes C, McCarthy D, Wilson CG, Lyons R, Carter KC, Schätzlein A, Uchegbu IF (2006) Carbohydrate-based micelle clusters which enhance hydrophobic drug bioavailability by up to 1 order of magnitude. Biomacromolecules 7(12):3452–3459

    Article  CAS  PubMed  Google Scholar 

  19. Bell PC, Hurley CA, Nicol A, Guenin E, Wong JB, Pilkington-Miksa MA, Sarkar S, Writer MJ, Barker SE, Papahadjopoulos-Sternberg B, Ayazi Shamlou P, Hailes HC, Hart SL, Zicha D, Tabor AB (2007) Biophysical characterization of an integrin-targeted lipopolyplex gene delivery vector. Biochemistry 46:12930–12944

    Article  CAS  PubMed  Google Scholar 

  20. Borden MA, Martinez GV, Ricker J, Tsvetkova N, Longo M, Gillies RJ, Dayton PA, Ferrara KW (2006) Lateral phase separation in lipid-coated microbubbles. Langmuir 22(9):4291–4297

    Article  CAS  PubMed  Google Scholar 

  21. Costello MJ (1980) Ultra-rapid freezing of thin biological samples. Scan Electron Microsc Pt 2:361–370

    Google Scholar 

  22. Costello MJ, Fetter R, Höchli M (1982) Simple procedures for evaluating the cryofixation of biological samples. J Microsc 125:125–136

    Article  CAS  PubMed  Google Scholar 

  23. Tenchov BG, Lis LJ, Quinn PJ (1987) Mechanism and kinetics of the subtransition in hydrated L-dipalmitoyl-phosphatidylcholine. Biochim Biophys Acta 897:143–151

    Article  CAS  PubMed  Google Scholar 

  24. Copeland BR, McConnell HM (1980) The rippled structure in bilayer membranes of phosphatidylcholine and binary mixtures of phosaphtidylcholine and cholesterol. Biochim Biophys Acta 599:95–109

    Article  CAS  PubMed  Google Scholar 

  25. Branton D (1966) Fracture faces of frozen membranes. Proc Natl Acad Sci U S A 55:1048–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Torchilin VP, Levchenko TS, Rammohan R, Volodina N, Papahadjopoulos-Sternberg B, D’Souza GG (2003) Cell transfection in vitro and in vivo with nontoxic TAT peptide-liposome-DNA complexes. Proc Natl Acad Sci U S A 100(4):1972–1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Weng KC, Noble CO, Papahadjopoulos-Sternberg B, Chen FF, Drummond DC, Kirpotin DB, Wang D, Hom YK, Hann B, Park JW (2008) Targeted tumor cell internalization and imaging of multifunctional quantum dot-conjugated immunoliposomes in vitro and in vivo. Nano Lett 8(9):2851–2857, Published on Web 08/20/2008

    Article  CAS  PubMed  Google Scholar 

  28. Torchilin VP, Lukyanov AN, Gao Z, Papahadjopoulos-Sternberg B (2003) Immunomicelles: Targeted pharmaceutical carriers for poorly soluble drugs. Proc Natl Acad Sci U S A 100(10):6039–6044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Sternberg B, Sorgi FL, Huang L (1994) New structures in complex formation between DNA and cationic liposomes visualized by freeze-fracture electron microscopy. FEBS-Lett 356:361–366

    Article  CAS  PubMed  Google Scholar 

  30. Margaritis LH, Elgsaeter A, Branton D (1977) Rotary replication for freeze-etching. J Cell Biol 72:47–56

    Article  CAS  PubMed  Google Scholar 

  31. Ververgaert PHJT, Verkley AJ (1978) A view on intramembraneous particles. Experrientia 34:454–455

    Article  CAS  Google Scholar 

  32. Gross H (1987) High resolution metal replication of freeze-dried specimens. In: Steinbrecht RA, Zierold K (eds) Cryotechniques in Biological Electron Microscopy. Springer, Berlin, pp 205–228

    Chapter  Google Scholar 

  33. Paradossi G, Cavalieri F, Chiessi E, Ponassi V, Martorana V (2002) Tailoring of physical and chemical properties of macro- and microhydrogels based on telechelic PVA. Biomacromolecules 3(6):1255–1262

    Article  CAS  PubMed  Google Scholar 

  34. Cavalieri F, El Hamassi A, Chiessi E, Paradossi G (2006) Tethering functional ligands onto shell of ultrasound active polymeric microbubbles. Biomacromolecules 7(2):604–611

    Article  CAS  PubMed  Google Scholar 

  35. Sternberg B, Rudolph P (1992) Unusual fracture behaviour of membranes made of bipolar lipids of Thermoplasma acidophilum. Electron Microscopy 3, EUREM 92, Granada, Spain 85–86

    Google Scholar 

  36. Henderson B, Wilson M, Sharp L, Ward JM (2002) Actinobacillus actinomycetemcomitans. J Med Microbiol 51:1013–1020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author would like to thank Mr. Stephen Kuzmic, S & J Services, Santa Clara for all his technical support especially in building all the home-made devices; Mr. John Ayou, Microanalytical Laboratories, Inc., Emeryville for excess to the JEOL 100CX; Mr. Alexander Veynberg, UC Berkeley for his excellent workshop-work; and Dr. Jack Ackrell for all the helpful discussions and his technical help especially on preparation days.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Papahadjopoulos-Sternberg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Papahadjopoulos-Sternberg, B. (2017). Freeze-Fracture Electron Microscopy on Domains in Lipid Mono- and Bilayer on Nano-Resolution Scale. In: D'Souza, G. (eds) Liposomes. Methods in Molecular Biology, vol 1522. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6591-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6591-5_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6589-2

  • Online ISBN: 978-1-4939-6591-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics