Skip to main content

Label-Free Sensing on Microarrays

  • Protocol
  • First Online:
Small Molecule Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1518))

Abstract

Microarrays of biological molecules such as DNAs, proteins, carbohydrates, and small molecules provide a high-throughput platform for screening tens of thousands of biomolecular interactions simultaneously, facilitating the functional characterization of these biomolecules in areas of genomics, proteomics, glycomics, and cytomics. Routinely, analysis of binding reactions between solution-phased probes and surface-immobilized targets involves some kinds of fluorescence-based detection methods. Even though these methods have advantages of high sensitivity and wide dynamic range, labeling probes and/or targets inevitably changes their innate properties and in turn affects probe–target interactions in often uncharacterized ways. Therefore, in recent years, various label-free sensing technologies have been developed for characterizing biomolecular interactions in microarray format. These biosensors, to a certain extent, take the place of fluorescent methods by providing a comparable sensitivity as well as retaining the conformational and functional integrality of biomolecules to be investigated. More importantly, some of these biosensors are capable of real-time monitoring probe–target interactions, providing the binding affinities of these reactions. Using label-free biosensors in microarrays has become a current trend in developing high-throughput screening platforms for drug discoveries and applications in all areas of “-omics.” This article is aimed to provide principles and recent developments in label-free sensing technologies applicable to microarrays, with special attentions being paid to surface plasmon resonance microscopy and oblique-incidence reflectivity difference microscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. MacBeath G (2002) Protein microarrays and proteomics. Nat Genet 32:526–532. doi:10.1038/Ng1037

    Article  CAS  PubMed  Google Scholar 

  2. Zhu H, Bilgin M, Bangham R, Hall D, Casamayor A, Bertone P, Lan N, Jansen R, Bidlingmaier S, Houfek T, Mitchell T, Miller P, Dean RA, Gerstein M, Snyder M (2001) Global analysis of protein activities using proteome chips. Science 293(5537):2101–2105. doi:10.1126/science.1062191, 1062191 [pii]

    Article  CAS  PubMed  Google Scholar 

  3. Sun YS, Landry JP, Fei YY, Zhu XD (2008) Effect of fluorescently labeling protein probes on kinetics of protein-ligand reactions. Langmuir 24(23):13399–13405. doi:10.1021/La802097z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fei YY, Sun YS, Li YH, Lau K, Yu H, Chokhawala HA, Huang SS, Landry JP, Chen X, Zhu XD (2011) Fluorescent labeling agents change binding profiles of glycan-binding proteins. Mol Biosyst 7(12):3343–3352. doi:10.1039/C1mb05332a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Niu SJ, Saraf RF (2002) An approach to sequence DNA without tagging. Smart Mater Struct 11(5):778–782

    Article  CAS  Google Scholar 

  6. Rocha-Gaso MI, March-Iborra C, Montoya-Baides A, Arnau-Vives A (2009) Surface generated acoustic wave biosensors for the detection of pathogens: a review. Sensors 9(7):5740–5769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Matatagui D, Fontecha J, Fernandez MJ, Oliver MJ, Hernando-Garcia J, Sanchez-Rojas JL, Gracia I, Cane C, Santos JP, Horrillo MC (2013) Comparison of two types of acoustic biosensors to detect immunoreactions: love-wave sensor working in dynamic mode and QCM working in static mode. Sensor Actuat B-Chem 189:123–129

    Article  CAS  Google Scholar 

  8. Lange K, Rapp BE, Rapp M (2008) Surface acoustic wave biosensors: a review. Anal Bioanal Chem 391(5):1509–1519

    Article  PubMed  CAS  Google Scholar 

  9. Luo X, Davis JJ (2013) Electrical biosensors and the label free detection of protein disease biomarkers. Chem Soc Rev 42(13):5944–5962. doi:10.1039/c3cs60077g

    Article  CAS  PubMed  Google Scholar 

  10. Kyu Kim S, Cho H, Park HJ, Kwon D, Min Lee J, Hyun Chung B (2009) Nanogap biosensors for electrical and label-free detection of biomolecular interactions. Nanotechnology 20(45):455502. doi:10.1088/0957-4484/20/45/455502, S0957-4484(09)23000-5 [pii]

    Article  PubMed  CAS  Google Scholar 

  11. Ishikawa FN, Chang HK, Curreli M, Liao HI, Olson CA, Chen PC, Zhang R, Roberts RW, Sun R, Cote RJ, Thompson ME, Zhou C (2009) Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. ACS Nano 3(5):1219–1224. doi:10.1021/nn900086c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maehashi K, Matsumoto K (2009) Label-free electrical detection using carbon nanotube-based biosensors. Sensors (Basel) 9(7):5368–5378. doi:10.3390/s90705368, sensors-09-05368 [pii]

    Article  CAS  Google Scholar 

  13. Mendoza-Madrigal AG, Chanona-Perez JJ, Hernandez-Sanchez H, Palacios-Gonzalez E, Calderon-Dominguez G, Mendez-Mendez JV, Blasco J, Villa-Vargas LA (2013) Mechanical biosensors in biological and food area: a review. Revista Mexicana De Ingenieria Quimica 12(2):205–225

    CAS  Google Scholar 

  14. Arlett JL, Myers EB, Roukes ML (2011) Comparative advantages of mechanical biosensors. Nat Nanotechnol 6(4):203–215. doi:10.1038/nnano.2011.44

    Article  CAS  PubMed  Google Scholar 

  15. Hall DA, Gaster RS, Lin T, Osterfeld SJ, Han S, Murmann B, Wang SX (2010) GMR biosensor arrays: a system perspective. Biosens Bioelectron 25(9):2051–2057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhang P, Thiyagarajah N, Bae S (2011) Magnetically labeled GMR biosensor with a single immobilized ferrimagnetic particle agent for the detection of extremely low concentration of biomolecules. IEEE Sensors J 11(9):1927–1934

    Article  CAS  Google Scholar 

  17. Fleming MR, Shamah SM, Kaczmarek LK (2014) Use of label-free optical biosensors to detect modulation of potassium channels by G-protein coupled receptors. J Vis Exp 84:e51307. doi:10.3791/51307

    Google Scholar 

  18. Citartan M, Gopinath SC, Tominaga J, Tang TH (2013) Label-free methods of reporting biomolecular interactions by optical biosensors. Analyst 138(13):3576–3592. doi:10.1039/c3an36828a

    Article  CAS  PubMed  Google Scholar 

  19. Bhatta D, Stadden E, Hashem E, Sparrow IJ, Emmerson GD (2010) Label-free monitoring of antibody-antigen interactions using optical microchip biosensors. J Immunol Methods 362(1-2):121–126. doi:10.1016/j.jim.2010.09.015, S0022-1759(10)00269-3 [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Fang Y (2009) Guest editor’s introduction: label-free optical biosensors to cell biology and drug discovery. Introduction. J Recept Signal Transduct Res 29(3-4):127. doi:10.1080/10799890903079869

    Article  CAS  PubMed  Google Scholar 

  21. Ma YQ, Farrell G, Semenova Y, Chan HP, Wu Q (2013) Hybrid plasmonic biosensor for simultaneous measurement of both thickness and refractive index. Infr Phys Technol 60:134–136. doi:10.1016/j.infrared.2013.04.001

    Article  CAS  Google Scholar 

  22. Zibaii MI, Kazemi A, Latifi H, Azar MK, Hosseini SM, Ghezelaiagh MH (2010) Measuring bacterial growth by refractive index tapered fiber optic biosensor. J Photochem Photobiol B-Biol 101(3):313–320. doi:10.1016/j.jphotobiol.2010.07.017

    Article  CAS  Google Scholar 

  23. Konopsky VN, Alieva EV (2010) A biosensor based on photonic crystal surface waves with an independent registration of the liquid refractive index. Biosens Bioelectron 25(5):1212–1216. doi:10.1016/j.bios.2009.09.011

    Article  CAS  PubMed  Google Scholar 

  24. Li KW, Liu GG, Wu YH, Hao P, Zhou WC, Zhang ZQ (2014) Gold nanoparticle amplified optical microfiber evanescent wave absorption biosensor for cancer biomarker detection in serum. Talanta 120:419–424. doi:10.1016/j.talanta.2013.11.085

    Article  CAS  PubMed  Google Scholar 

  25. Lin HY, Huang CH, Chen SH, Liu YC, Chang WZ, Chau LK (2013) Tubular waveguide evanescent field absorption biosensor based on particle plasmon resonance for multiplex label-free detection. Biosens Bioelectron 41:268–274. doi:10.1016/j.bios.2012.08.041

    Article  CAS  PubMed  Google Scholar 

  26. Maier I, Morgan MRA, Lindner W, Pittner F (2008) Optical resonance-enhanced absorption-based near-field immunochip biosensor for allergen detection. Anal Chem 80(8):2694–2703. doi:10.1021/Ac702107k

    Article  CAS  PubMed  Google Scholar 

  27. Sanz V, de Marcos S, Galban J (2007) A reagentless optical biosensor based on the intrinsic absorption properties of peroxidase. Biosens Bioelectron 22(6):956–964. doi:10.1016/j.bios.2006.04.008

    Article  CAS  PubMed  Google Scholar 

  28. Yuk JS, Guignon EF, Lynes MA (2014) Sensitivity enhancement of a grating-based surface plasmon-coupled emission (SPCE) biosensor chip using gold thickness. Chem Phys Lett 591:5–9. doi:10.1016/j.cplett.2013.10.081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yuk JS, Guignon EF, Lynes MA (2013) Highly sensitive grating coupler-based surface plasmon-coupled emission (SPCE) biosensor for immunoassay. Analyst 138(9):2576–2582. doi:10.1039/C3an00135k

    Article  CAS  PubMed  Google Scholar 

  30. Wegner SV, Okesli A, Chen P, He CA (2007) Design of an emission ratiometric biosensor from MerR family proteins: A sensitive and selective sensor for Hg2+. J Am Chem Soc 129(12):3474. doi:10.1021/Ja068342d

    Article  CAS  PubMed  Google Scholar 

  31. Wegner SV, Okesli A, Chen P, He CA (2007) Design of an emission ratiometric biosensor from MerR family proteins: a sensitive and selective sensor for Hg(II). Abstr Pap Am Chem Soc 233:430–430

    Google Scholar 

  32. Chen J, Jiang J, Gao X, Liu G, Shen G, Yu R (2008) A new aptameric biosensor for cocaine based on surface-enhanced Raman scattering spectroscopy. Chemistry 14(27):8374–8382. doi:10.1002/chem.200701307

    Article  CAS  PubMed  Google Scholar 

  33. Karlsson R, Michaelsson A, Mattsson L (1991) Kinetic analysis of monoclonal antibody-antigen interactions with a new biosensor based analytical system. J Immunol Methods 145(1-2):229–240

    Article  CAS  PubMed  Google Scholar 

  34. Piehler J, Brecht A, Gauglitz G (1996) Affinity detection of low molecular weight analytes. Anal Chem 68(1):139–143. doi:10.1021/ac9504878

    Article  CAS  PubMed  Google Scholar 

  35. Zhu XD (2006) Comparison of two optical techniques for label-free detection of biomolecular microarrays on solids. Opt Commun 259(2):751–753. doi:10.1016/j.optcom.2005.09.079

    Article  CAS  Google Scholar 

  36. Akowuah EK, Gorman T, Haxha S (2009) Design and optimization of a novel surface plasmon resonance biosensor based on Otto configuration. Optic Express 17(26):23511–23521. doi:10.1364/OE.17.023511, 192717 [pii]

    Article  CAS  Google Scholar 

  37. Szunerits S, Maalouli N, Wijaya E, Vilcot JP, Boukherroub R (2013) Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal Bioanal Chem 405(5):1435–1443. doi:10.1007/s00216-012-6624-0

    Article  CAS  PubMed  Google Scholar 

  38. Roh S, Chung T, Lee B (2011) Overview of the characteristics of micro- and nano-structured surface plasmon resonance sensors. Sensors (Basel) 11(2):1565–1588. doi:10.3390/s110201565, sensors-11-01565 [pii]

    Article  Google Scholar 

  39. Yingying Z, Jiancheng L, Cheng Y, Zhenhua L (2009) Determination of effective complex refractive index of a turbid liquid with surface plasmon resonance phase detection. Appl Opt 48(7):1262–1267, doi:176748 [pii]

    Article  PubMed  Google Scholar 

  40. Abeles FL-RT (1982) Surface polaritions at metal surfaces and interfaces. Surface polaritons: electromagnetic waves at surfaces and interfaces. Elsevier Science, New York

    Google Scholar 

  41. Pockrand I (1978) Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings. Surf Sci 72:577–588

    Article  CAS  Google Scholar 

  42. Giebel K, Bechinger C, Herminghaus S, Riedel M, Leiderer P, Weiland U, Bastmeyer M (1999) Imaging of cell/substrate contacts of living cells with surface plasmon resonance microscopy. Biophys J 76(1 Pt 1):509–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Watanabe K, Terakado G, Kano H (2009) Localized surface plasmon microscope with an illumination system employing a radially polarized zeroth-order Bessel beam. Opt Lett 34(8):1180–1182, doi:178987 [pii]

    Article  PubMed  Google Scholar 

  44. Unfricht DW, Colpitts SL, Fernandez SM, Lynes MA (2005) Grating-coupled surface plasmon resonance: A cell and protein microarray platform. Proteomics 5(17):4432–4442

    Article  CAS  PubMed  Google Scholar 

  45. Singh BK, Hillier AC (2006) Surface plasmon resonance imaging of biomolecular interactions on a grating-based sensor array. Anal Chem 78(6):2009–2018

    Article  CAS  PubMed  Google Scholar 

  46. Yoon KH, Shuler ML, Kim SJ (2006) Design optimization of nano-grating surface plasmon resonance sensors. Optic Express 14(11):4842–4849

    Article  Google Scholar 

  47. Campbell CT, Kim G (2007) SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 28(15):2380–2392. doi:10.1016/j.biomaterials.2007.01.047, S0142-9612(07)00125-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  48. Beusink JB, Lokate AM, Besselink GA, Pruijn GJ, Schasfoort RB (2008) Angle-scanning SPR imaging for detection of biomolecular interactions on microarrays. Biosens Bioelectron 23(6):839–844. doi:10.1016/j.bios.2007.08.025, S0956-5663(07)00378-8 [pii]

    Article  CAS  PubMed  Google Scholar 

  49. Lokate AM, Beusink JB, Besselink GA, Pruijn GJ, Schasfoort RB (2007) Biomolecular interaction monitoring of autoantibodies by scanning surface plasmon resonance microarray imaging. J Am Chem Soc 129(45):14013–14018. doi:10.1021/ja075103x

    Article  CAS  PubMed  Google Scholar 

  50. Scarano S, Mascini M, Turner AP, Minunni M (2010) Surface plasmon resonance imaging for affinity-based biosensors. Biosens Bioelectron 25(5):957–966. doi:10.1016/j.bios.2009.08.039, S0956-5663(09)00463-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  51. Lee HJ, Goodrich TT, Corn RM (2001) SPR imaging measurements of 1-D and 2-D DNA microarrays created from microfluidic channels on gold thin films. Anal Chem 73(22):5525–5531

    Article  CAS  Google Scholar 

  52. Nelson BP, Grimsrud TE, Liles MR, Goodman RM, Corn RM (2001) Surface plasmon resonance imaging measurements of DNA and RNA hybridization adsorption onto DNA microarrays. Anal Chem 73(1):1–7

    Article  CAS  PubMed  Google Scholar 

  53. Shumaker-Parry JS, Aebersold R, Campbell CT (2004) Parallel, quantitative measurement of protein binding to a 120-element double-stranded DNA array in real time using surface plasmon resonance microscopy. Anal Chem 76(7):2071–2082. doi:10.1021/ac035159j

    Article  CAS  PubMed  Google Scholar 

  54. Shumaker-Parry JS, Zareie MH, Aebersold R, Campbell CT (2004) Microspotting streptavidin and double-stranded DNA arrays on gold for high-throughput studies of protein-DNA interactions by surface plasmon resonance microscopy. Anal Chem 76(4):918–929. doi:10.1021/ac034964v

    Article  CAS  PubMed  Google Scholar 

  55. Lee HJ, Nedelkov D, Corn RM (2006) Surface plasmon resonance imaging measurements of antibody arrays for the multiplexed detection of low molecular weight protein biomarkers. Anal Chem 78(18):6504–6510. doi:10.1021/ac060881d

    Article  CAS  PubMed  Google Scholar 

  56. Ro HS, Koh BH, Jung SO, Park HK, Shin YB, Kim MG, Chung BH (2006) Surface plasmon resonance imaging protein arrays for analysis of triple protein interactions of HPV, E6, E6AP and p53. Proteomics 6(7):2108–2111

    Article  CAS  PubMed  Google Scholar 

  57. Wong CL, Chen GCK, Ng BK, Agarwal S, Lin ZP, Chen P, Ho HP (2011) Multiplex spectral surface plasmon resonance imaging (SPRI) sensor based on the polarization control scheme. Optic Express 19(20):18965–18978

    Article  CAS  Google Scholar 

  58. Boozer C, Kim G, Cong S, Guan H, Londergan T (2006) Looking towards label-free biomolecular interaction analysis in a high-throughput format: a review of new surface plasmon resonance technologies. Curr Opin Biotechnol 17(4):400–405. doi:10.1016/j.copbio.2006.06.012, S0958-1669(06)00096-6 [pii]

    Article  CAS  PubMed  Google Scholar 

  59. Smith EA, Thomas WD, Kiessling LL, Corn RM (2003) Surface plasmon resonance imaging studies of protein-carbohydrate interactions. J Am Chem Soc 125(20):6140–6148. doi:10.1021/ja034165u

    Article  CAS  PubMed  Google Scholar 

  60. Karamanska R, Clarke J, Blixt O, Macrae JI, Zhang JQ, Crocker PR, Laurent N, Wright A, Flitsch SL, Russell DA, Field RA (2008) Surface plasmon resonance imaging for real-time, label-free analysis of protein interactions with carbohydrate microarrays. Glycoconj J 25(1):69–74. doi:10.1007/s10719-007-9047-y

    Article  CAS  PubMed  Google Scholar 

  61. Fais M, Karamanska R, Allman S, Fairhurst SA, Innocenti P, Fairbanks AJ, Donohoe TJ, Davis BG, Russell DA, Field RA (2011) Surface plasmon resonance imaging of glycoarrays identifies novel and unnatural carbohydrate-based ligands for potential ricin sensor development. Chem Sci 2(10):1952–1959

    Article  CAS  Google Scholar 

  62. Joshi AA, Peczuh MW, Kumar CV, Rusling JF (2014) Ultrasensitive carbohydrate-peptide SPR imaging microarray for diagnosing IgE mediated peanut allergy (vol 139, pg 5728, 2014). Analyst 139(24):6589–6589

    Article  CAS  Google Scholar 

  63. Kanoh N, Kyo M, Inamori K, Ando A, Asami A, Nakao A, Osada H (2006) SPR imaging of photo-cross-linked small-molecule arrays on gold. Anal Chem 78(7):2226–2230. doi:10.1021/ac051777j

    Article  CAS  PubMed  Google Scholar 

  64. Neumann T, Junker HD, Schmidt K, Sekul R (2007) SPR-based fragment screening: advantages and applications. Curr Top Med Chem 7(16):1630–1642

    Article  CAS  PubMed  Google Scholar 

  65. Singh V, Zhu J, Nand A, Cheng Z, Mo Y (2014) 3D small molecule microarray with enhanced sensitivity and immobilization capacity monitored by surface plasmon resonance imaging. RSC Advances. doi:10.1039/C4RA07306A

    Google Scholar 

  66. Singh V, Singh K, Nand A, Daid H, Wang J, Zhang L, Merino A, Zhu J (2015) Small molecule microarray screening methodology based on surface plasmon resonance imaging. Arab J Chem. doi:10.1016/j.arabjc.2014.12.020

    Google Scholar 

  67. Azzam RMA, Bashara NM (1987) Ellipsometry and polarized light. Elsevier Science, New York

    Google Scholar 

  68. Zhu XD (2004) Oblique-incidence optical reflectivity difference from a rough film of crystalline material. Phys Rev B 69(11)

    Google Scholar 

  69. Zhu XD, Fei YY, Wang X, Lu HB, Yang GZ (2007) General theory of optical reflection from a thin film on a solid and its application to heteroepitaxy. Physical Rev B 75(245434):1–14

    Google Scholar 

  70. Fei YY, Landry JP, Sun YS, Zhu XD, Luo JT, Wang XB, Lam KS (2008) A novel high-throughput scanning microscope for label-free detection of protein and small-molecule chemical microarrays. Rev Sci Instrum 79(1):013708. doi:10.1063/1.2830286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Landry JP, Zhu XD, Gregg JP (2004) Label-free detection of microarrays of biomolecules by oblique-incidence reflectivity difference microscopy. Opt Lett 29(6):581–583

    Article  CAS  PubMed  Google Scholar 

  72. Sun YS, Zhu XD (2014) An ellipsometry-based biosensor for label-free, real-time, and in-situ detection of DNA-DNA and DNA-protein interactions. Chin J Phys 52(54)

    Google Scholar 

  73. Zhu XD, Landry JP, Sun YS, Gregg JP, Lam KS, Guo XW (2007) Oblique-incidence reflectivity difference microscope for label-free high-throughput detection of biochemical reactions in a microarray format. Appl Opt 46(10):1890–1895. doi:10.1364/Ao.46.001890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Landry JP, Sun YS, Guo XW, Zhu XD (2008) Protein reactions with surface-bound molecular targets detected by oblique-incidence reflectivity difference microscopes. Appl Opt 47(18):3275–3288, doi:163551 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Landry JP, Fei YY, Zhu XD (2012) Simultaneous measurement of 10,000 protein–ligand affinity constants using microarray-based kinetic constant assays. Assay Drug Dev Technol 10(3):250–259. doi:10.1089/adt.2011.0406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. NIH MLP. http://mli.nih.gov/mli/secondary-menu/mlscn/screening-centers/

  77. Fei Y, Landry JP, Li Y, Yu H, Lau K, Huang S, Chokhawala HA, Chen X, Zhu XD (2013) An optics-based variable-temperature assay system for characterizing thermodynamics of biomolecular reactions on solid support. Rev Sci Instrum 84(11):114102. doi:10.1063/1.4826352

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Fei YY, Schmidt A, Bylund G, Johansson DX, Henriksson S, Lebrilla C, Solnick JV, Boren T, Zhu XD (2011) Use of real-time, label-free analysis in revealing low-affinity binding to blood group antigens by Helicobacter pylori. Anal Chem 83(16):6336–6341. doi:10.1021/ac201260c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Sun YS, Zhu XD (2013) Ellipsometry-based biosensor for label-free detection of biomolecular interactions in micro array format. Sensor Mater 25(9):673–688

    Google Scholar 

  80. Fei Y, Sun YS, Li Y, Yu H, Lau K, Landry JP, Luo Z, Baumgarth N, Chen X, Zhu X (2015) Characterization of receptor binding profiles of influenza A viruses using an ellipsometry-based label-free glycan microarray assay platform. Biomolecules 5(3):1480–1498. doi:10.3390/biom5031480, biom5031480 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Sun YS, Landry JP, Fei YY, Zhu XD, Luo JT, Wang XB, Lam KS (2009) Macromolecular scaffolds for immobilizing small molecule microarrays in label-free detection of protein-ligand interactions on solid support. Anal Chem 81(13):5373–5380. doi:10.1021/ac900889p

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Fei YY, Landry JP, Sun YS, Zhu XD, Wang XB, Luo JT, Wu CY, Lam KS (2010) Screening small-molecule compound microarrays for protein ligands without fluorescence labeling with a high-throughput scanning microscope. J Biomed Optics 15 (1). doi: 10.1117/1.3309743. Artn 016018

  83. Sun YS, Fei YY, Luo JT, Dixon S, Landry JP, Lam KS, Zhu XD (2014) Generating encoded compound libraries for fabricating microarrays as a high-throughput protein ligand discovery platform. Synthetic Comm 44:987–1001

    Article  CAS  Google Scholar 

  84. Landry JP, Fei Y, Zhu X, Ke Y, Yu G, Lee P (2013) Discovering small molecule ligands of vascular endothelial growth factor that block VEGF-KDR binding using label-free microarray-based assays. Assay Drug Dev Technol 11(5):326–332. doi:10.1089/adt.2012.485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Landry JP, Ke Y, Yu GL, Zhu XD (2015) Measuring affinity constants of 1450 monoclonal antibodies to peptide targets with a microarray-based label-free assay platform. J Immunol Methods 417:86–96. doi:10.1016/j.jim.2014.12.011, S0022-1759(14)00364-0 [pii]

    Article  CAS  PubMed  Google Scholar 

  86. Lo KY, Sun YS, Landry JP, Zhu X, Deng W (2011) Label-free detection of surface markers on stem cells by oblique-incidence reflectivity difference microscopy. Biotechniques 50(6):381–388. doi:10.2144/000113670, 000113670 [pii]

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Sun YS, Luo JT, Lam KS, Zhu XD (2013) Detection of formation and disintegration of micelles by oblique-incidence reflectivity difference microscopy. Instrum Sci Technol 41(6):545–555. doi:10.1080/10739149.2013.798808

    Article  CAS  Google Scholar 

  88. Sun YS (2014) Optical biosensors for label-free detection of biomolecular interactions. Instrum Sci Technol 42(2):109–127. doi:10.1080/10739149.2013.843060

    Article  CAS  Google Scholar 

  89. Landry JP, Gray J, O'Toole MK, Zhu XD (2006) Incidence-angle dependence of optical reflectivity difference from an ultrathin film on solid surface. Opt Lett 31(4):531–533

    Article  CAS  PubMed  Google Scholar 

  90. Sun YS, Landry JP, Fei YY, Zhu XD (2013) An oblique-incidence reflectivity difference study of the dependence of probe-target reaction constants on surface target density using streptavidin-biotin reactions as a model. Instrum Sci Technol 41(5):535–544. doi:10.1080/10739149.2013.775590

    Article  CAS  Google Scholar 

  91. Hoummady M, Campitelli A, Wlodarski W (1997) Acoustic wave sensors: design, sensing mechanisms and applications. Smart Mater Struct 6

    Google Scholar 

  92. Calabrese G, Wohltjen H, Roy M (1987) Surface acoustic wave devices as chemical sensors in liquids. Evidence disputing the importance of Rayleigh wave attenuation. Anal Chem 59(56)

    Google Scholar 

  93. Schlensog MD, Gronewold TMA, Tewes M, Famulok M, Quandt E (2004) A love-wave biosensor using nucleic acids as ligands. Sensor Actuat B-Chem 101(3):308–315

    Article  CAS  Google Scholar 

  94. Auner G, Shreve G, Ying H, Newaz G, Hughes C, Xu J (2003) Dual-mode acoustic wave biosensors microarrays. Proc SPIE 5119 Bioengineered and Bioinspired Systems 129. doi:10.1117/12.499097

  95. Baselt DR, Lee GU, Natesan M, Metzger SW, Sheehan PE, Colton RJ (1998) A biosensor based on magnetoresistance technology. Biosens Bioelectron 13(7-8):731–739

    Article  CAS  PubMed  Google Scholar 

  96. Osterfeld SJ, Yu H, Gaster RS, Caramuta S, Xu L, Han SJ, Hall DA, Wilson RJ, Sun SH, White RL, Davis RW, Pourmand N, Wang SX (2008) Multiplex protein assays based on real-time magnetic nanotag sensing. P Natl Acad Sci USA 105(52):20637–20640

    Article  CAS  Google Scholar 

  97. Madeira A, Ohman E, Nilsson A, Sjogren B, Andren PE, Svenningsson P (2009) Coupling surface plasmon resonance to mass spectrometry to discover novel protein-protein interactions. Nat Protoc 4(7):1023–1037. doi:10.1038/nprot.2009.84, nprot.2009.84 [pii]

    Article  CAS  PubMed  Google Scholar 

  98. Martins VC, Cardoso FA, Germano J, Cardoso S, Sousa L, Piedade M, Freitas PP, Fonseca LP (2009) Femtomolar limit of detection with a magnetoresistive biochip. Biosens Bioelectron 24(8):2690–2695

    Article  CAS  PubMed  Google Scholar 

  99. Xu L, Yu H, Akhras MS, Han SJ, Osterfeld S, White RL, Pourmand N, Wang SX (2008) Giant magnetoresistive biochip for DNA detection and HPV genotyping. Biosens Bioelectron 24(1):99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hall DA, Gaster RS, Makinwa K, Wang SX, Murmann B (2013) A 256 pixel magnetoresistive biosensor microarray in 0.18mum CMOS. IEEE J Solid-State Circuit 48(5):1290–1301. doi:10.1109/JSSC.2013.2245058

    Article  Google Scholar 

  101. Estrela P, Li P, Keighley SD, Migliorato P (2009) Label-free electrical biosensor arrays: a new challenge for TFT technology. J Korean Phys Soc 54(1):498–504

    Article  CAS  Google Scholar 

  102. Bergveld P (2003) Thirty years of ISFETOLOGY - what happened in the past 30 years and what may happen in the next 30 years. Sensor Actuat B-Chem 88(1):1–20

    Article  CAS  Google Scholar 

  103. Archera M, Christophersena M, Faucheta P, Persauda D, Hirschman K (2003) Electrical porous silicon microarray for DNA hybridization detection. MRS Proceedings 782:A7.2. doi:10.1557/PROC-782-A7.2

    Google Scholar 

  104. Elsholz B, Nitsche A, Achenbach J, Ellerbrok H, Blohm L, Albers J, Pauli G, Hintsche R, Worl R (2009) Electrical microarrays for highly sensitive detection of multiplex PCR products from biological agents. Biosens Bioelectron 24(6):1737–1743

    Article  CAS  PubMed  Google Scholar 

  105. Wang ZY, Cheng ZQ, Singh V, Zheng Z, Wang YM, Li SP, Song LS, Zhu JS (2014) Stable and sensitive silver surface plasmon resonance imaging sensor using trilayered metallic structures. Anal Chem 86(3):1430–1436. doi:10.1021/Ac402126k

    Article  CAS  PubMed  Google Scholar 

  106. Nedelkov D (2007) Development of surface plasmon resonance mass spectrometry array platform. Anal Chem 79(15):5987–5990. doi:10.1021/ac070608r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Bouffartigues E, Leh H, Anger-Leroy M, Rimsky S, Buckle M (2007) Rapid coupling of Surface Plasmon Resonance (SPR and SPRi) and ProteinChip based mass spectrometry for the identification of proteins in nucleoprotein interactions. Nucleic Acids Res 35(6), e39. doi:10.1093/nar/gkm030, gkm030 [pii]

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Rouleau A, El Osta M, Lucchi G, Ducoroy P, Boireau W (2012) Immuno-MALDI-MS in human plasma and on-chip biomarker characterizations at the femtomole level. Sensors 12(11):15119–15132. doi:10.3390/S121115119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Liu C, Cui D, Li H (2010) A hard-soft microfluidic-based biosensor flow cell for SPR imaging application. Biosens Bioelectron 26(1):255–261. doi:10.1016/j.bios.2010.06.041, S0956-5663(10)00342-8 [pii]

    Article  PubMed  CAS  Google Scholar 

  110. Ouellet E, Lausted C, Lin T, Yang CW, Hood L, Lagally ET (2010) Parallel microfluidic surface plasmon resonance imaging arrays. Lab Chip 10(5):581–588. doi:10.1039/b920589f

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

The author thanks financial supports from Taiwan MOST 105-2112-M-030-002-MY2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yung-Shin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sun, YS. (2017). Label-Free Sensing on Microarrays. In: Uttamchandani, M., Yao, S. (eds) Small Molecule Microarrays. Methods in Molecular Biology, vol 1518. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6584-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6584-7_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6582-3

  • Online ISBN: 978-1-4939-6584-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics