Skip to main content

Profiling Phosphopeptide-Binding Domain Recognition Specificity Using Peptide Microarrays

  • Protocol
  • First Online:
Small Molecule Microarrays

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1518))

Abstract

Cellular organization and response to internal and external stimuli are mediated by an intricate web of protein interactions. Some of these interactions are regulated by covalent posttranslational modifications such as phosphorylation and acetylation. These modifications can change the chemical nature of the interaction interfaces and modulate the binding affinity of the interacting partners. In signal transduction, the most frequent modification is reversible phosphorylation of tyrosine, serine or threonine residues. Protein phosphorylation may modulate the activity of enzymes by modifying their conformation, or regulate the formation of complexes by creating docking sites to recruit downstream effectors. Families of modular domains, such as SH2, PTB, and 14-3-3, act as “readers” of the modification event. Specificity between closely related domains of the same family is mediated by the chemical properties of the domain binding surface that, aside from offering a hydrophilic pocket for the phosphorylated residue, shows preference for specific sequences. Although the protein structure and the cell context are also important to ensure specificity, the amino acid sequence flanking the phosphorylation site defines the accuracy of the recognition process, and it is therefore essential to define the binding specificity of phosphopeptide binding domains in order to understand and to infer the interaction web mediated by phosphopeptides. Methods commonly used to discover new interactions (such as yeast two hybrid and phage display) are not suited to study interactions with phosphorylated proteins. On the other hand, peptide arrays are a powerful approach to precisely identify the binding preference of phosphopeptide recognition domains. Here we describe a detailed protocol to assemble arrays of hundreds to thousands phospho-peptides and to screen them with any modular domain of interest.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dente L, Vetriani C, Zucconi A, Pelicci G, Lanfrancone L, Pelicci PG, Cesareni G (1997) Modified phage peptide libraries as a tool to study specificity of phosphorylation and recognition of tyrosine containing peptides. J Mol Biol 269:694–703

    Article  CAS  PubMed  Google Scholar 

  2. Merrifield RB (1963) Solid phase peptide synthesis. I. The synthesis of a tetrapeptide. J Am Chem Soc 85:2149

    Article  CAS  Google Scholar 

  3. Frank R (1992) SPOT-synthesis: an easy technique for the positionally addressable, parallel chemical synthesis on a membrane support. Tetrahedron 48:9217

    Article  CAS  Google Scholar 

  4. Songyang Z, Shoelson SE, Chaudhuri M, Gish G, Pawson T, Haser WG, King F, Roberts T, Ratnofsky S, Lechleider RJ et al (1993) SH2 domains recognize specific phosphopeptide sequences. Cell 72:767–778

    Article  CAS  PubMed  Google Scholar 

  5. Yaffe MB, Rittinger K, Volinia S, Caron PR, Aitken A, Leffers H, Gamblin SJ, Smerdon SJ, Cantley LC (1997) The structural basis for 14-3-3:phosphopeptide binding specificity. Cell 91:961–971

    Article  CAS  PubMed  Google Scholar 

  6. Panni S, Montecchi-Palazzi L, Kiemer L, Cabibbo A, Paoluzi S, Santonico E, Landgraf C, Volkmer-Engert R, Bachi A, Castagnoli L et al (2011) Combining peptide recognition specificity and context information for the prediction of the 14-3-3-mediated interactome in S. cerevisiae and H. sapiens. Proteomics 11:128–143

    Article  CAS  PubMed  Google Scholar 

  7. Landgraf C, Panni S, Montecchi-Palazzi L, Castagnoli L, Schneider-Mergener J, Volkmer-Engert R, Cesareni G (2004) Protein interaction networks by proteome peptide scanning. PLoS Biol 2:94

    Article  Google Scholar 

  8. Wenschuh H, Volkmer-Engert R, Schmidt M, Schulz M, Schneider-Mergener J, Reineke U (2000) Coherent membrane supports for parallel microsynthesis and screening of bioactive peptides. Biopolymers 55:188–206

    Article  CAS  PubMed  Google Scholar 

  9. Volkmer R, Tapia V, Landgraf C (2012) Synthetic peptide arrays for investigating protein interaction domains. FEBS Lett 586:2780–2786

    Article  CAS  PubMed  Google Scholar 

  10. Shin DS, Kim DH, Chung WJ, Lee YS (2005) Combinatorial solid phase peptide synthesis and bioassays. J Biochem Mol Biol 38:517–525

    CAS  PubMed  Google Scholar 

  11. Wu H, Ge J, Uttamchandani M, Yao SQ (2011) Small molecule microarrays: the first decade and beyond. Chem Commun (Camb) 47:5664–5670

    CAS  Google Scholar 

  12. Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251:767–773

    Article  CAS  PubMed  Google Scholar 

  13. Pellois JP, Zhou X, Srivannavit O, Zhou T, Gulari E, Gao X (2002) Individually addressable parallel peptide synthesis on microchips. Nat Biotechnol 20:922–926

    Article  CAS  PubMed  Google Scholar 

  14. Beyer M, Nesterov A, Block I, Konig K, Felgenhauer T, Fernandez S, Leibe K, Torralba G, Hausmann M, Trunk U et al (2007) Combinatorial synthesis of peptide arrays onto a microchip. Science 318:1888

    Article  CAS  PubMed  Google Scholar 

  15. Buus S, Rockberg J, Forsstrom B, Nilsson P, Uhlen M, Schafer-Nielsen C (2012) High-resolution mapping of linear antibody epitopes using ultrahigh-density peptide microarrays. Mol Cell Proteomics 11:1790–1800

    Article  PubMed  PubMed Central  Google Scholar 

  16. Forsstrom B, Axnas BB, Stengele KP, Buhler J, Albert TJ, Richmond TA, Hu FJ, Nilsson P, Hudson EP, Rockberg J et al (2014) Proteome-wide epitope mapping of antibodies using ultra-dense peptide arrays. Mol Cell Proteomics 13:1585–1597

    Article  PubMed  PubMed Central  Google Scholar 

  17. Falsey JR, Renil M, Park S, Li S, Lam KS (2001) Peptide and small molecule microarray for high throughput cell adhesion and functional assays. Bioconjug Chem 12:346–353

    Article  CAS  PubMed  Google Scholar 

  18. Lizcano JM, Deak M, Morrice N, Kieloch A, Hastie CJ, Dong L, Schutkowski M, Reimer U, Alessi DR (2002) Molecular basis for the substrate specificity of NIMA-related kinase-6 (NEK6). Evidence that NEK6 does not phosphorylate the hydrophobic motif of ribosomal S6 protein kinase and serum- and glucocorticoid-induced protein kinase in vivo. J Biol Chem 277:27839–27849

    Article  CAS  PubMed  Google Scholar 

  19. Panse S, Dong L, Burian A, Carus R, Schutkowski M, Reimer U, Schneider-Mergener J (2004) Profiling of generic anti-phosphopeptide antibodies and kinases with peptide microarrays using radioactive and fluorescence-based assays. Mol Divers 8:291–299

    Article  CAS  PubMed  Google Scholar 

  20. Kohn M, Wacker R, Peters C, Schroder H, Soulere L, Breinbauer R, Niemeyer CM, Waldmann H (2003) Staudinger ligation: a new immobilization strategy for the preparation of small-molecule arrays. Angew Chem Int Ed Engl 42:5830–5834

    Article  PubMed  Google Scholar 

  21. Kohn M, Gutierrez-Rodriguez M, Jonkheijm P, Wetzel S, Wacker R, Schroeder H, Prinz H, Niemeyer CM, Breinbauer R, Szedlacsek SE et al (2007) A microarray strategy for mapping the substrate specificity of protein tyrosine phosphatase. Angew Chem Int Ed Engl 46:7700–7703

    Article  PubMed  Google Scholar 

  22. Lesaicherre ML, Uttamchandani M, Chen GY, Yao SQ (2002) Antibody-based fluorescence detection of kinase activity on a peptide array. Bioorg Med Chem Lett 12:2085–2088

    Article  CAS  PubMed  Google Scholar 

  23. Wu H, Ge J, Yao SQ (2010) Microarray-assisted high-throughput identification of a cell-permeable small-molecule binder of 14-3-3 proteins. Angew Chem Int Ed Engl 49:6528–6532

    Article  CAS  PubMed  Google Scholar 

  24. Pawson T, Scott JD (2005) Protein phosphorylation in signaling--50 years and counting. Trends Biochem Sci 30:286–290

    Article  CAS  PubMed  Google Scholar 

  25. Tinti M, Kiemer L, Costa S, Miller ML, Sacco F, Olsen JV, Carducci M, Paoluzi S, Langone F, Workman CT et al (2013) The SH2 domain interaction landscape. Cell Rep 3:1293–1305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hornbeck PV, Zhang B, Murray B, Kornhauser JM, Latham V, Skrzypek E (2015) PhosphoSitePlus, 2014: mutations, PTMs and recalibrations. Nucleic Acids Res 43:D512–D520

    Article  PubMed  Google Scholar 

  27. Sadowski I, Breitkreutz BJ, Stark C, Su TC, Dahabieh M, Raithatha S, Bernhard W, Oughtred R, Dolinski K, Barreto K et al. (2013) The PhosphoGRID Saccharomyces cerevisiae protein phosphorylation site database: version 2.0 update. Database article ID bap026

    Google Scholar 

  28. Dinkel H, Chica C, Via A, Gould CM, Jensen LJ, Gibson TJ, Diella F (2011) Phospho.ELM: a database of phosphorylation sites – update 2011. Nucleic Acids Res 39:D261–D267

    Article  CAS  PubMed  Google Scholar 

  29. Blom N, Gammeltoft S, Brunak S (1999) Sequence and structure-based prediction of eukaryotic protein phosphorylation sites. J Mol Biol 294:1351–1362

    Article  CAS  PubMed  Google Scholar 

  30. Winkler DFH, Hilpert K (2009) Synthesis of antimicrobial peptides using the SPOT technique. Antimicrob Pept 618:111–124

    Article  Google Scholar 

Download references

Acknowledgment

The authors thank Christiane Landgraft and Rudolf Volkmer-Engert for the invaluable support in setting up spot synthesis protocols. This work was supported by the Affinomics EU FP7 project to G.C. and to Italian Ministry of University and Research (PRIN 2010 NRREPL) to S.P.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michele Tinti or Simona Panni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Tinti, M., Panni, S., Cesareni, G. (2017). Profiling Phosphopeptide-Binding Domain Recognition Specificity Using Peptide Microarrays. In: Uttamchandani, M., Yao, S. (eds) Small Molecule Microarrays. Methods in Molecular Biology, vol 1518. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6584-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6584-7_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6582-3

  • Online ISBN: 978-1-4939-6584-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics