Skip to main content

Single-Molecule Fluorescence Energy Transfer Assays for the Characterization of Reaction Pathways of miRNA-Argonaute Complex

  • Protocol
  • First Online:
Drug Target miRNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1517))

Abstract

Argonaute proteins are key components of the microRNA-induced silencing complexes (miRISCs) that mediate the posttranscriptional gene silencing of microRNAs and small interfering RNA (siRNAs). The complex reaction mechanism of miRISC is expected to be characterized by tracing the reaction pathways of miRISC at the single-molecule level in real time. In this chapter, we describe single-molecule fluorescence resonance energy transfer (FRET) assays to observe the target binding and reaction pathways of miRISC composed of a recombinant Argonaute and a small RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  2. Kim VN (2005) Small RNAs: classification, biogenesis, and function. Mol Cells 19(1):1–15

    Article  CAS  PubMed  Google Scholar 

  3. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854

    Article  CAS  PubMed  Google Scholar 

  4. Vagin VV et al (2006) A distinct small RNA pathway silences selfish genetic elements in the germline. Science 313(5785):320–324

    Article  CAS  PubMed  Google Scholar 

  5. Tam OH et al (2008) Pseudogene-derived small interfering RNAs regulate gene expression in mouse oocytes. Nature 453(7194):534–538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Watanabe T et al (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453(7194):539–543

    Article  CAS  PubMed  Google Scholar 

  7. Wightman B, Ha I, Ruvkun G (1993) Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 75(5):855–862

    Article  CAS  PubMed  Google Scholar 

  8. Hammond SM, Bernstein E, Beach D, Hannon GJ (2000) An RNA-directed nuclease mediates post-transcriptional gene silencing in Drosophila cells. Nature 404(6775):293–296

    Article  CAS  PubMed  Google Scholar 

  9. Rivas FV et al (2005) Purified Argonaute2 and an siRNA form recombinant human RISC. Nat Struct Mol Biol 12(4):340–349

    Article  CAS  PubMed  Google Scholar 

  10. Elbashir SM, Martinez J, Patkaniowska A, Lendeckel W, Tuschl T (2001) Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. EMBO J 20(23):6877–6888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yekta S, Shih IH, Bartel DP (2004) MicroRNA-directed cleavage of HOXB8 mRNA. Science 304(5670):594–596

    Article  CAS  PubMed  Google Scholar 

  12. Liu J et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441

    Article  CAS  PubMed  Google Scholar 

  13. Iwakawa HO, Tomari Y (2015) The functions of MicroRNAs: mRNA decay and translational repression. Trends Cell Biol 25(11):651–665

    Article  CAS  PubMed  Google Scholar 

  14. Ha T (2001) Single-molecule fluorescence resonance energy transfer. Methods 25(1):78–86

    Article  CAS  PubMed  Google Scholar 

  15. Ha T (2001) Single-molecule fluorescence methods for the study of nucleic acids. Curr Opin Struct Biol 11(3):287–292

    Article  CAS  PubMed  Google Scholar 

  16. Roy R, Hohng S, Ha T (2008) A practical guide to single-molecule FRET. Nat Methods 5(6):507–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Joo C, Balci H, Ishitsuka Y, Buranachai C, Ha T (2008) Advances in single-molecule fluorescence methods for molecular biology. Annu Rev Biochem 77:51–76

    Article  CAS  PubMed  Google Scholar 

  18. Ha T et al (1996) Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U S A 93(13):6264–6268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hohng S, Lee S, Lee J, Jo MH (2014) Maximizing information content of single-molecule FRET experiments: multi-color FRET and FRET combined with force or torque. Chem Soc Rev 43(4):1007–1013

    Article  CAS  PubMed  Google Scholar 

  20. Lee S, Lee J, Hohng S (2010) Single-molecule three-color FRET with both negligible spectral overlap and long observation time. PLoS One 5(8), e12270

    Article  PubMed  PubMed Central  Google Scholar 

  21. Jo MH et al (2015) Human Argonaute 2 has diverse reaction pathways on target RNAs. Mol Cell 59(1):117–124

    Article  CAS  PubMed  Google Scholar 

  22. Schirle NT, Sheu-Gruttadauria J, MacRae IJ (2014) Structural basis for microRNA targeting. Science 346(6209):608–613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kapanidis AN et al (2004) Fluorescence-aided molecule sorting: analysis of structure and interactions by alternating-laser excitation of single molecules. Proc Natl Acad Sci U S A 101(24):8936–8941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jung SR et al (2013) Dynamic anchoring of the 3'-end of the guide strand controls the target dissociation of Argonaute-guide complex. J Am Chem Soc 135(45):16865–16871

    Article  CAS  PubMed  Google Scholar 

  25. Guizar-Sicairos M, Thurman ST, Fienup JR (2008) Efficient subpixel image registration algorithms. Opt Lett 33(2):156–158

    Article  PubMed  Google Scholar 

  26. Hwang W, Bae S, Hohng S (2012) Autofocusing system based on optical astigmatism analysis of single-molecule images. Opt Express 20(28):29353–29360

    Article  CAS  PubMed  Google Scholar 

  27. Senavirathne G et al (2015) Widespread nuclease contamination in commonly used oxygen-scavenging systems. Nat Methods 12(10):901–902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work was supported by Creative Research Initiatives (Physical Genetics Laboratory, 2009-0081562) to S.H.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sungchul Hohng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jo, M.H., Hohng, S. (2017). Single-Molecule Fluorescence Energy Transfer Assays for the Characterization of Reaction Pathways of miRNA-Argonaute Complex. In: Schmidt, M. (eds) Drug Target miRNA. Methods in Molecular Biology, vol 1517. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6563-2_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6563-2_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6561-8

  • Online ISBN: 978-1-4939-6563-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics