Skip to main content

Site-Specific Fluorescent Labeling of Argonaute for FRET-Based Bio-Assays

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1517))

Abstract

Deciphering the molecular mechanisms of eukaryotic Argonaute proteins is crucial for the understanding of RNA interference (RNAi), a posttranscriptional gene silencing process. Fluorescence-based single-molecule studies like single-molecule Förster resonance energy transfer (FRET) between a donor and acceptor dye represent a versatile tool to gain a mechanistic understanding of the structural dynamics of a biomolecular complex. Until today it was not possible to site-specifically introduce fluorophores into eukaryotic Argonaute. Using an archaeal Argonaute variant from Methanocaldococcus jannaschii that closely resembles its eukaryotic counterpart, we site-specifically incorporated fluorescent probes into Argonaute. In this chapter, we first describe how to express archaeal Argonaute with the site-specifically engineered unnatural amino acid para-azido-l-phenylalanine (pAzF) and subsequently describe the coupling of a fluorophore exploiting the unique chemistry of the azide group of pAzF. In the second part of the chapter, we present a methodological approach that probes complex formation between acceptor-labeled archaeal Argonaute and guide and target nucleic acids equipped with a donor fluorophore which ultimately allows single-molecule FRET measurements. Furthermore we describe binding and cleavage assays that report on the functionality of Argonaute–nucleic acid complexes.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Swarts DC, Makarova K, Wang Y, Nakanishi K, Ketting RF, Koonin EV, Patel DJ, van der Oost J (2014) The evolutionary journey of Argonaute proteins. Nat Struct Mol Biol 21(9):743–753

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Willkomm S, Zander A, Gust A, Grohmann D (2015) A prokaryotic twist on Argonaute function. Life 5:538–553

    Article  PubMed  PubMed Central  Google Scholar 

  3. Makarova KS, Wolf YI, van der Oost J, Koonin EV (2009) Prokaryotic homologs of Argonaute proteins are predicted to function as key components of a novel system of defense against mobile genetic elements. Biol Direct 4:29

    Article  PubMed  PubMed Central  Google Scholar 

  4. Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391(6669):806–811

    Article  CAS  PubMed  Google Scholar 

  5. Swarts DC, Jore MM, Westra ER, Zhu Y, Janssen JH, Snijders AP, Wang Y, Patel DJ, Berenguer J, Brouns SJJ, van der Oost J (2014) DNA-guided DNA interference by a prokaryotic Argonaute. Nature 507(7491):258–261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Olovnikov I, Chan K, Sachidanandam R, Newman DK, Aravin A (2013) Bacterial argonaute samples the transcriptome to identify foreign DNA. Mol Cell 51(5):594–605

    Article  CAS  PubMed  Google Scholar 

  7. Ma J-B, Yuan Y-R, Meister G, Pei Y, Tuschl T, Patel DJ (2005) Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434(7033):666–670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Rashid UJ, Paterok D, Koglin A, Gohlke H, Piehler J, Chen J (2007) Structure of Aquifex aeolicus argonaute highlights conformational flexibility of the PAZ domain as a potential regulator of RNA-induced silencing complex function. J Biol Chem 282(18):13824–13832

    Article  CAS  PubMed  Google Scholar 

  9. Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJ (2008) Structure of the guide-strand-containing argonaute silencing complex. Nature 456(7219):209–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Juranek S, Li H, Sheng G, Tuschl T, Patel DJDJ (2008) Structure of an argonaute silencing complex with a seed-containing guide DNA and target RNA duplex. Nature 456(7224):921–926

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sheng G, Zhao H, Wang J, Rao Y, Tian W, Swarts DC, van der Oost J, Patel DJ, Wang Y (2014) Structure-based cleavage mechanism of Thermus thermophilus Argonaute DNA guide strand-mediated DNA target cleavage. Proc Natl Acad Sci U S A 111(2):652–657

    Article  CAS  PubMed  Google Scholar 

  12. Zander A, Holzmeister P, Klose D, Tinnefeld P, Grohmann D (2014) Single-molecule FRET supports the two-state model of Argonaute action. RNA Biol 11(1):45–56

    Article  CAS  PubMed  Google Scholar 

  13. Elkayam E, Kuhn CD, Tocilj A, Haase AD, Greene EM, Hannon GJ, Joshua-Tor L (2012) The structure of human argonaute-2 in complex with miR-20a. Cell 150(1):100–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T (2004) Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 15(2):185–197

    Article  CAS  PubMed  Google Scholar 

  15. Liu J, Carmell M, Rivas FV, Marsden CG, Thomson JM, Song J-J, Hammond SM, Joshua-Tor L, Hannon GJ (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441

    Article  CAS  PubMed  Google Scholar 

  16. Chin JW, Santoro SW, Martin AB, King DS, Wang L, Schultz PG (2002) Addition of p-Azido-l-phenylalanine to the genetic code of Escherichia coli. J Am Chem Soc 124(31):9026–9027

    Article  CAS  PubMed  Google Scholar 

  17. Kiick KL, Saxon E, Tirrell DA, Bertozzi CR (2002) Incorporation of azides into recombinant proteins for chemoselective modification by the Staudinger ligation. Proc Natl Acad Sci U S A 99(1):19–24

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dina Grohmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Willkomm, S., Zander, A., Grohmann, D. (2017). Site-Specific Fluorescent Labeling of Argonaute for FRET-Based Bio-Assays. In: Schmidt, M. (eds) Drug Target miRNA. Methods in Molecular Biology, vol 1517. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6563-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6563-2_20

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6561-8

  • Online ISBN: 978-1-4939-6563-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics