Skip to main content

Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches

  • Protocol
  • First Online:
Drug Target miRNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1517))

Abstract

MicroRNA (miRNA) and Argonaute (AGO) protein together form the RNA-induced silencing complex (RISC) that plays an essential role in the regulation of gene expression. Elucidating the underlying mechanism of AGO-miRNA recognition is thus of great importance not only for the in-depth understanding of miRNA function but also for inspiring new drugs targeting miRNAs. In this chapter we introduce a combined computational approach of molecular dynamics (MD) simulations, Markov state models (MSMs), and protein-RNA docking to investigate AGO-miRNA recognition. Constructed from MD simulations, MSMs can elucidate the conformational dynamics of AGO at biologically relevant timescales. Protein-RNA docking can then efficiently identify the AGO conformations that are geometrically accessible to miRNA. Using our recent work on human AGO2 as an example, we explain the rationale and the workflow of our method in details. This combined approach holds great promise to complement experiments in unraveling the mechanisms of molecular recognition between large, flexible, and complex biomolecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297. doi:10.1016/S0092-8674(04)00045-5

    Article  CAS  PubMed  Google Scholar 

  2. Bushati N, Cohen SM (2007) MicroRNA functions. Annu Rev Cell Dev Biol 23:175–205. doi:10.1146/annurev.cellbio.23.090506.123406

    Article  CAS  PubMed  Google Scholar 

  3. Wilson RC, Doudna JA (2013) Molecular mechanisms of RNA interference. Annu Rev Biophys 42:217–239. doi:10.1146/annurev-biophys-083012-130404

    Article  CAS  PubMed  Google Scholar 

  4. Friedman RC, Farh KKH, Burge CB et al (2009) Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19(1):92–105. doi:10.1101/gr.082701.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136(2):215–233. doi:10.1016/j.cell.2009.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang XW, Heegaard NHH, Orum H (2012) MicroRNAs in liver disease. Gastroenterology 142(7):1431–1443. doi:10.1053/j.gastro.2012.04.007

    Article  CAS  PubMed  Google Scholar 

  7. Chivukula RR, Shi GL, Acharya A et al (2014) An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration. Cell 157(5):1104–1116. doi:10.1016/j.cell.2014.03.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jansson MD, Lund AH (2012) MicroRNA and cancer. Mol Oncol 6(6):590–610. doi:10.1016/j.molonc.2012.09.006

    Article  CAS  PubMed  Google Scholar 

  9. Misso G, Di Martino MT, De Rosa G et al (2014) Mir-34: a new weapon against cancer? Mol Ther Nucleic Acids 3:e194. doi:10.1038/mtna.2014.47

    Article  CAS  PubMed  Google Scholar 

  10. Gebert LFR, Rebhan MAE, Crivelli SEM et al (2014) Miravirsen (SPC3649) can inhibit the biogenesis of miR-122. Nucleic Acids Res 42(1):609–621. doi:10.1093/nar/gkt852

    Article  CAS  PubMed  Google Scholar 

  11. Meister G (2013) Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 14(7):447–459. doi:10.1038/nrg3462

    Article  CAS  PubMed  Google Scholar 

  12. Kawamata T, Tomari Y (2010) Making RISC. Trends Biochem Sci 35(7):368–376. doi:10.1016/j.tibs.2010.03.009

    Article  CAS  PubMed  Google Scholar 

  13. Sasaki HM, Tomari Y (2012) The true core of RNA silencing revealed. Nat Struct Mol Biol 19(7):657–660. doi:10.1038/Nsmb.2302

    Article  CAS  PubMed  Google Scholar 

  14. Frank F, Sonenberg N, Nagar B (2010) Structural basis for 5′-nucleotide base-specific recognition of guide RNA by human AGO2. Nature 465(7299):818–822. doi:10.1038/nature09039

    Article  CAS  PubMed  Google Scholar 

  15. Schirle NT, MacRae IJ (2012) The crystal structure of human argonaute 2. Science 336(6084):1037–1040. doi:10.1126/science.1221551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Elkayam E, Kuhn CD, Tocilj A et al (2012) The structure of human argonaute-2 in complex with miR-20a. Cell 150(1):100–110. doi:10.1016/j.cell.2012.05.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schirle NT, Sheu-Gruttadauria J, MacRae IJ (2014) Structural basis for microRNA targeting. Science 346(6209):608–613. doi:10.1126/science.1258040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Pérez-Hernández G, Paul F, Giorgino T et al (2013) Identification of slow molecular order parameters for Markov model construction. J Chem Phys 139(1):015102. doi:10.1063/1.4811489

    Article  PubMed  CAS  Google Scholar 

  19. Schwantes CR, Pande VS (2013) Improvements in Markov State Model construction reveal many non-native interactions in the folding of NTL9. J Chem Theory Comput 9(4):2000–2009. doi:10.1021/ct300878a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Deerberg A, Willkomm S, Restle T (2013) Minimal mechanistic model of siRNA-dependent target RNA slicing by recombinant human argonaute 2 protein. Proc Natl Acad Sci U S A 110(44):17850–17855. doi:10.1073/pnas.1217838110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Levitt M (2001) The birth of computational structural biology. Nat Struct Biol 8(5):392–393. doi:10.1038/87545

    Article  CAS  PubMed  Google Scholar 

  22. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652. doi:10.1038/Nsb0902-646

    Article  CAS  PubMed  Google Scholar 

  23. Wang YH, Li Y, Ma Z et al (2010) Mechanism of MicroRNA-target interaction: molecular dynamics simulations and thermodynamics analysis. PLoS Comput Biol 6(7):e1000866. doi:10.1371/journal.pcbi.1000866

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Xia Z, Clark P, Huynh T et al (2012) Molecular dynamics simulations of Ago silencing complexes reveal a large repertoire of admissible 'seed-less' targets. Sci Rep 2:569. doi:10.1038/Srep00909

    PubMed  PubMed Central  Google Scholar 

  25. Xia Z, Huynh T, Ren PY et al (2013) Large domain motions in ago protein controlled by the guide DNA-strand seed region determine the Ago-DNA-mRNA complex recognition process. PLoS One 8(1):e54620. doi:10.1371/journal.pone.0054620

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Noe F, Fischer S (2008) Transition networks for modeling the kinetics of conformational change in macromolecules. Curr Opin Struct Biol 18(2):154–162

    Article  CAS  PubMed  Google Scholar 

  27. Chodera JD, Singhal N, Pande VS et al (2007) Automatic discovery of metastable states for the construction of Markov models of macromolecular conformational dynamics. J Chem Phys 126(15):155101

    Article  PubMed  CAS  Google Scholar 

  28. Morcos F, Chatterjee S, McClendon CL et al (2010) Modeling conformational ensembles of slow functional motions in Pin1-WW. PLoS Comput Biol 6(12):e1001015. doi:10.1371/journal.pcbi.1001015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Zheng W, Andrec M, Gallicchio E et al (2007) Simulating replica exchange simulations of protein folding with a kinetic network model. Proc Natl Acad Sci U S A 104(39):15340–15345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pan AC, Roux B (2008) Building Markov state models along pathways to determine free energies and rates of transitions. J Chem Phys 129(6):064107. doi:10.1063/1.2959573

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Prinz JH, Wu H, Sarich M et al (2011) Markov models of molecular kinetics: generation and validation. J Chem Phys 134(17):174105. doi:10.1063/1.3565032

    Article  PubMed  CAS  Google Scholar 

  32. Schütte C, Huisinga W (2000) Biomolecular conformations as metastable sets of Markov chains. Paper presented at the proceedings of the 38th annual Allerton conference on communication, control, and computing, Monticello, IL, 4–6 Oct 2000

    Google Scholar 

  33. Gfeller D, De Los Rios P, Caflisch A et al (2007) Complex network analysis of free-energy landscapes. Proc Natl Acad Sci U S A 104(6):1817–1822. doi:10.1073/Pnas.0608099104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Bowman GR, Huang X, Pande VS (2009) Using generalized ensemble simulations and Markov state models to identify conformational states. Methods 49(2):197–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hummer G, Szabo A (2015) Optimal dimensionality reduction of multistate kinetic and Markov-state models. J Phys Chem B 119(29):9029–9037. doi:10.1021/jp508375q

    Article  CAS  PubMed  Google Scholar 

  36. Chodera JD, Noe F (2014) Markov state models of biomolecular conformational dynamics. Curr Opin Struct Biol 25:135–144. doi:10.1016/j.sbi.2014.04.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Weinan E, Vanden-Eijnden E (2006) Towards a theory of transition paths. J Stat Phys 123(3):503–523

    Article  Google Scholar 

  38. Yao Y, Cui RZ, Bowman GR et al (2013) Hierarchical Nyström methods for constructing Markov state models for conformational dynamics. J Chem Phys 138:174106. doi:10.1063/1.4802007

    Article  PubMed  CAS  Google Scholar 

  39. Sheong FK, Silva DA, Meng L et al (2015) Automatic state partitioning for multi-body systems (APM): an efficient algorithm for constructing Markov state models to elucidate conformational dynamics of multi-body systems. J Chem Theory Comput 11(1):17–27. doi:10.1021/ct5007168

    Article  CAS  PubMed  Google Scholar 

  40. Buchete NV, Hummer G (2008) Coarse master equations for peptide folding dynamics. J Phys Chem 112(19):6057–6069

    Article  CAS  Google Scholar 

  41. Zheng W, Andrec M, Gallicchio E et al (2008) Simple continuous and discrete models for simulating replica exchange simulations of protein folding. J Phys Chem 112(19):6083–6093

    Article  CAS  Google Scholar 

  42. Jain A, Stock G (2012) Identifying metastable states of folding proteins. J Chem Theory Comput 8(10):3810–3819. doi:10.1021/Ct300077q

    Article  CAS  PubMed  Google Scholar 

  43. Huang X, Yao Y, Bowman GR et al (2010) Constructing multi-resolution markov state models (msms) to elucidate RNA hairpin folding mechanisms. Pac Symp Biocomput 2010:228–239

    Google Scholar 

  44. Bowman GR, Voelz VA, Pande VS (2011) Taming the complexity of protein folding. Curr Opin Struct Biol 21(1):4–11. doi:10.1016/j.sbi.2010.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhuang W, Cui RZ, Silva DA et al (2011) Simulating the T-Jump-Triggered Unfolding Dynamics of trpzip2 Peptide and Its Time-Resolved IR and Two-Dimensional IR Signals Using the Markov State Model Approach. J Phys Chem B 115(18):5415–5424. doi:10.1021/Jp109592b

    Article  CAS  PubMed  Google Scholar 

  46. Qiao Q, Bowman GR, Huang XH (2013) Dynamics of an intrinsically disordered protein reveal metastable conformations that potentially seed aggregation. J Am Chem Soc 135(43):16092–16101. doi:10.1021/Ja403147m

    Article  CAS  PubMed  Google Scholar 

  47. Noe F, Schutte C, Vanden-Eijnden E et al (2009) Constructing the equilibrium ensemble of folding pathways from short off-equilibrium simulations. Proc Natl Acad Sci U S A 106(45):19011–19016. doi:10.1073/pnas.0905466106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Razavi AM, Wuest WM, Voelz VA (2014) Computational screening and selection of cyclic peptide hairpin mimetics by molecular simulation and kinetic network models. J Chem Inf Model 54(5):1425–1432. doi:10.1021/Ci500102y

    Article  CAS  PubMed  Google Scholar 

  49. Voelz VA, Bowman GR, Beauchamp K et al (2010) Molecular simulation of ab initio protein folding for a millisecond folder NTL9(1-39). J Am Chem Soc 132(5):1526–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Da LT, Wang D, Huang X (2012) Dynamics of pyrophosphate ion release and its coupled trigger loop motion from closed to open state in RNA polymerase II. J Am Chem Soc 134(4):2399–2406. doi:10.1021/ja210656k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Silva DA, Weiss DR, Pardo Avila F et al (2014) Millisecond dynamics of RNA polymerase II translocation at atomic resolution. Proc Natl Acad Sci U S A 111(21):7665–7670. doi:10.1073/pnas.1315751111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Da LT, Avila FP, Wang D et al (2013) A two-state model for the dynamics of the pyrophosphate ion release in bacterial RNA polymerase. PLoS Comput Biol 9(4):e1003020. doi:10.1371/journal.pcbi.1003020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Kohlhoff KJ, Shukla D, Lawrenz M et al (2014) Cloud-based simulations on Google Exacycle reveal ligand modulation of GPCR activation pathways. Nat Chem 6(1):15–21. doi:10.1038/Nchem.1821

    Article  CAS  PubMed  Google Scholar 

  54. Shukla D, Meng YL, Roux B et al (2014) Activation pathway of Src kinase reveals intermediate states as targets for drug design. Nat Commun 5:3397. doi:10.1038/Ncomms4397

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Held M, Metzner P, Prinz JH et al (2011) Mechanisms of protein-ligand association and its modulation by protein mutations. Biophys J 100(3):701–710. doi:10.1016/j.bpj.2010.12.3699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Silva DA, Bowman GR, Sosa-Peinado A et al (2011) A role for both conformational selection and induced fit in ligand binding by the LAO protein. PLoS Comput Biol 7(5):e1002054. doi:10.1371/Journal.Pcbi.1002054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Buch I, Giorgino T, De Fabritiis G (2011) Complete reconstruction of an enzyme-inhibitor binding process by molecular dynamics simulations. Proc Natl Acad Sci U S A 108(25):10184–10189. doi:10.1073/pnas.1103547108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gu S, Silva DA, Meng L et al (2014) Quantitatively characterizing the ligand binding mechanisms of choline binding protein using Markov state model analysis. PLoS Comput Biol 10(8):e1003767. doi:10.1371/journal.pcbi.1003767

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Plattner N, Noe F (2015) Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models. Nat Commun 6:7653. doi:10.1038/Ncomms8653

    Article  PubMed  PubMed Central  Google Scholar 

  60. de Vries SJ, van Dijk AD, Krzeminski M et al (2007) HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins 69(4):726–733. doi:10.1002/prot.21723

    Article  PubMed  CAS  Google Scholar 

  61. Dominguez C, Boelens R, Bonvin AM (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J Am Chem Soc 125(7):1731–1737. doi:10.1021/ja026939x

    Article  CAS  PubMed  Google Scholar 

  62. Fleishman SJ, Whitehead TA, Strauch EM et al (2011) Community-wide assessment of protein-interface modeling suggests improvements to design methodology. J Mol Biol 414(2):289–302. doi:10.1016/j.jmb.2011.09.031

    Article  CAS  PubMed  Google Scholar 

  63. Lensink MF, Wodak SJ (2013) Docking, scoring, and affinity prediction in CAPRI. Proteins 81(12):2082–2095. doi:10.1002/prot.24428

    Article  CAS  PubMed  Google Scholar 

  64. Jiang HL, Sheong FK, Zhu LZ et al (2015) Markov state models reveal a two-step mechanism of miRNA loading into the human argonaute protein: selective binding followed by structural re-arrangement. PLoS Comput Biol 11(7):e1004404. doi:10.1371/journal.pcbi.1004404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. The Journal of chemical physicsAlder BJ, Wainwright TE (1957) Phase transition for a hard sphere system. J Chem Phys 27(5):1208–1209. doi:10.1063/1.1743957

    Article  Google Scholar 

  66. Rahman A, Stilling F (1971) Molecular dynamics study of liquid water. J Chem Phys 55(7):3336. doi:10.1063/1.1676585

    Article  CAS  Google Scholar 

  67. Mccammon JA, Karplus M (1977) Internal motions of antibody molecules. Nature 268(5622):765–766. doi:10.1038/268765a0

    Article  CAS  PubMed  Google Scholar 

  68. Rodrigues JPGLM, Bonvin AMJJ (2014) Integrative computational modeling of protein interactions. FEBS J 281(8):1988–2003. doi:10.1111/febs.12771

    Article  CAS  PubMed  Google Scholar 

  69. Katchalskikatzir E, Shariv I, Eisenstein M et al (1992) Molecular-surface recognition – determination of geometric fit between proteins and their ligands by correlation techniques. Proc Natl Acad Sci U S A 89(6):2195–2199. doi:10.1073/pnas.89.6.2195

    Article  CAS  Google Scholar 

  70. Fischer D, Bachar O, Nussinov R et al (1992) An efficient automated computer vision based technique for detection of 3-dimensional structural motifs in proteins. J Biomol Struct Dyn 9(4):769–789

    Article  CAS  PubMed  Google Scholar 

  71. Mashiach E, Schneidman-Duhovny D, Peri A et al (2010) An integrated suite of fast docking algorithms. Proteins 78(15):3197–3204. doi:10.1002/prot.22790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Moal IH, Bates PA (2010) SwarmDock and the use of normal modes in protein-protein docking. Int J Mol Sci 11(10):3623–3648. doi:10.3390/ijms11103623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lyskov S, Gray JJ (2008) The RosettaDock server for local protein-protein docking. Nucleic Acids Res 36:W233–W238. doi:10.1093/nar/gkn216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Chen R, Li L, Weng ZP (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins 52(1):80–87. doi:10.1002/prot.10389

    Article  CAS  PubMed  Google Scholar 

  75. Guilhot-Gaudeffroy A, Froidevaux C, Aze J et al (2014) Protein-RNA complexes and efficient automatic docking: expanding RosettaDock possibilities. PLoS One 9(9):e108928. doi:10.1371/journal.pone.0108928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Sali A, Blundell TL (1993) Comparative protein modeling by satisfaction of spatial restraints. J Mol Biol 234(3):779–815. doi:10.1006/jmbi.1993.1626

    Article  CAS  PubMed  Google Scholar 

  77. Marti-Renom MA, Stuart AC, Fiser A et al (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325. doi:10.1146/annurev.biophys.29.1.291

    Article  CAS  PubMed  Google Scholar 

  78. Eswar N, Webb B, Marti-Renom MA et al (2006) Comparative protein structure modeling using Modeller. Curr Protoc Bioinformatics 5:56. doi:10.1002/0471250953.bi0506s15

    Google Scholar 

  79. Fiser A, Do RKG, Sali A (2000) Modeling of loops in protein structures. Protein Sci 9(9):1753–1773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Rother M, Rother K, Puton T et al (2011) ModeRNA: a tool for comparative modeling of RNA 3D structure. Nucleic Acids Res 39(10):4007–4022. doi:10.1093/nar/gkq1320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Berendsen HJC, Vanderspoel D, Vandrunen R (1995) Gromacs – a message-passing parallel molecular-dynamics implementation. Comput Phys Commun 91(1-3):43–56. doi:10.1016/0010-4655(95)00042-E

    Article  CAS  Google Scholar 

  82. Hess B, Kutzner C, van der Spoel D et al (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4(3):435–447

    Article  CAS  PubMed  Google Scholar 

  83. Pronk S, Pall S, Schulz R et al (2013) GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics 29(7):845–854. doi:10.1093/bioinformatics/btt055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Shaw DE, Deneroff MM, Dror RO et al (2008) Anton, a special-purpose machine for molecular dynamics simulation. Commun ACM 51(7):91–97. doi:10.1145/1364782.1364802

    Article  Google Scholar 

  85. Schrodinger, LLC (2015) The PyMOL molecular graphics system, Version 18. Schrodinger, New York, NY

    Google Scholar 

  86. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph Model 14(1):33–38. doi:10.1016/0263-7855(96)00018-5

    Article  CAS  Google Scholar 

  87. Michaud-Agrawal N, Denning EJ, Woolf TB et al (2011) Software news and updates MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J Comput Chem 32(10):2319–2327. doi:10.1002/jcc.21787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. McGibbon RT, Beauchamp KA, Harrigan MP et al (2015) MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys J 109(8):1528–1532. doi:10.1016/j.bpj.2015.08.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhu L, Jiang H, Sheong FK et al (2016) A flexible domain-domain hinge promotes an induced-fit dominant mechanism for the loading of guide-DNA into argonaute protein in Thermus Thermophilus. J Phys Chem B 20(10):2709–2720. doi:10.1021/acs.jpcb.5b12426

    Article  CAS  Google Scholar 

  90. Shaw DE, Dror RO, Salmon JK et al. (2009) Millisecond-scale molecular dynamics simulations on Anton. In: High performance computing networking, storage and analysis, proceedings of the conference on, 14–20 Nov 2009. pp 1–11. doi:10.1145/1654059.1654099

  91. Tenenbaum JB, Silva V, Langford JC (2000) A global geometric framework for nonlinear dimensionality reduction. Science 290(5500):2319–2323

    Article  CAS  PubMed  Google Scholar 

  92. Coifman RR, Lafon S, Lee AB et al (2005) Geometric diffusions as a tool for harmonic analysis and structure definition of data: diffusion maps. Proc Natl Acad Sci U S A 102(21):7426–7431. doi:10.1073/pnas.0500334102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Rohrdanz MA, Zheng W, Maggioni M et al (2011) Determination of reaction coordinates via locally scaled diffusion map. J Chem Phys 134(12):124116. doi:10.1063/1.3569857

    Article  PubMed  CAS  Google Scholar 

  94. Beauchamp KA, Bowman GR, Lane TJ et al (2011) MSMBuilder2: modeling conformational dynamics on the picosecond to millisecond scale. J Chem Theory Comput 7(10):3412–3419. doi:10.1021/ct200463m

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Senne M, Trendelkamp-Schroer B, Mey ASJS et al (2012) EMMA: a software package for Markov model building and analysis. J Chem Theory Comput 8(7):2223–2238. doi:10.1021/ct300274u

    Article  CAS  PubMed  Google Scholar 

  96. Scherer MK, Trendelkamp-Schroer B, Paul F et al (2015) PyEMMA 2: a software package for estimation, validation, and analysis of Markov models. J Chem Theory Comput 11(11):5525–5542. doi:10.1021/acs.jctc.5b00743

    Article  CAS  PubMed  Google Scholar 

  97. Gonzalez TF (1985) Clustering to minimize the maximum intercluster distance. Theory Comput Sci 38(2-3):293–306. doi:10.1016/0304-3975(85)90224-5

    Article  Google Scholar 

  98. Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an introduction to cluster analysis, vol 344. John Wiley & Sons, New York, NY

    Google Scholar 

  99. Nüske F, Keller BG, Pérez-Hernández G et al (2014) Variational approach to molecular kinetics. J Chem Theory Comput 10(4):1739–1752. doi:10.1021/ct4009156

    Article  PubMed  CAS  Google Scholar 

  100. Schutte C, Fischer A, Huisinga W et al (1999) A direct approach to conformational dynamics based on hybrid Monte Carlo. J Comput Phys 151(1):146–168. doi:10.1006/jcph.1999.6231

    Article  CAS  Google Scholar 

  101. Deuflhard P, Huisinga W, Fischer A et al (2000) Identification of almost invariant aggregates in reversible nearly uncoupled Markov chains. Linear Algebra Appl 315(1-3):39–59. doi:10.1016/S0024-3795(00)00095-1

    Article  Google Scholar 

  102. Deuflhard P, Weber M (2005) Robust Perron cluster analysis in conformation dynamics. Linear Algebra Appl 398:161–184

    Article  Google Scholar 

  103. Noe F, Horenko I, Schutte C et al (2007) Hierarchical analysis of conformational dynamics in biomolecules: transition networks of metastable states. J Chem Phys 126(15):155102. doi:10.1063/1.2714539

    Article  PubMed  CAS  Google Scholar 

  104. Yao Y, Sun J, Huang XH et al (2009) Topological methods for exploring low-density states in biomolecular folding pathways. J Chem Phys 130(14):144115. doi:10.1063/1.3103496

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Bowman GR (2012) Improved coarse-graining of Markov state models via explicit consideration of statistical uncertainty. J Chem Phys 137(13):134111. doi:10.1063/1.4755751

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Brunger AT, Adams PD, Clore GM et al (1998) Crystallography & NMR system: a new software suite for macromolecular structure determination. Acta Crystallogr Sect D Biol Crystallogr 54:905–921. doi:10.1107/S0907444998003254

    Article  CAS  Google Scholar 

  107. Brunger AT (2007) Version 1.2 of the crystallography and NMR system. Nat Protoc 2(11):2728–2733. doi:10.1038/nprot.2007.406

    Article  CAS  PubMed  Google Scholar 

  108. Linge JP, Nilges M (1999) Influence of non-bonded parameters on the quality of NMR structures: a new force field for NMR structure calculation. J Biomol NMR 13(1):51–59. doi:10.1023/A:1008365802830

    Article  CAS  PubMed  Google Scholar 

  109. Linge JP, Williams MA, Spronk CAEM et al (2003) Refinement of protein structures in explicit solvent. Proteins 50(3):496–506. doi:10.1002/Prot.10299

    Article  CAS  PubMed  Google Scholar 

  110. Jorgensen WL, Tiradorives J (1988) The Opls potential functions for proteins - energy minimizations for crystals of cyclic-peptides and crambin. J Am Chem Soc 110(6):1657–1666. doi:10.1021/Ja00214a001

    Article  CAS  PubMed  Google Scholar 

  111. Lindorff-Larsen K, Piana S, Palmo K et al (2010) Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins 78(8):1950–1958. doi:10.1002/prot.22711

    CAS  PubMed  PubMed Central  Google Scholar 

  112. Berendsen H, Postma J, van Gunsteren W et al (1981) Interaction models for water in relation to protein hydration. In: Intermolecular forces. Reidel, Dordrecht, pp 331–342

    Chapter  Google Scholar 

  113. Darden T, York D, Pedersen L (1993) Particle mesh Ewald – an N.Log(N) method for Ewald sums in large systems. J Chem Phys 98(12):10089–10092. doi:10.1063/1.464397

    Article  CAS  Google Scholar 

  114. Hess B, Bekker H, Berendsen HJC et al (1997) LINCS: a linear constraint solver for molecular simulations. J Comput Chem 18(12):1463–1472. doi:10.1002/(Sici)1096-987x(199709)18:12<1463::Aid-Jcc4>3.0.Co;2-H

    Article  CAS  Google Scholar 

  115. Bussi G, Donadio D, Parrinello M (2007) Canonical sampling through velocity rescaling. J Chem Phys 126(1):014101. doi:10.1063/1.2408420

    Article  PubMed  CAS  Google Scholar 

  116. Parrinello M, Rahman A (1981) Polymorphic transitions in single-crystals – a new molecular-dynamics method. J Appl Phys 52(12):7182–7190. doi:10.1063/1.328693

    Article  CAS  Google Scholar 

  117. Todorova N, Marinelli F, Piana S et al (2009) Exploring the folding free energy landscape of insulin using bias exchange metadynamics. J Phys Chem B 113(11):3556–3564. doi:10.1021/jp809776v

    Article  CAS  PubMed  Google Scholar 

  118. Piana S, Laio A (2007) A bias-exchange approach to protein folding. J Phys Chem B 111(17):4553–4559. doi:10.1021/jp067873l

    Article  CAS  PubMed  Google Scholar 

  119. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. Wires Comput Mol Sci 3(2):198–210. doi:10.1002/wcms.1121

    Article  CAS  Google Scholar 

  120. Brooks BR, Brooks CL, Mackerell AD et al (2009) CHARMM: the biomolecular simulation program. J Comput Chem 30(10):1545–1614. doi:10.1002/jcc.21287

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Phillips JC, Braun R, Wang W et al (2005) Scalable molecular dynamics with NAMD. J Comput Chem 26(16):1781–1802. doi:10.1002/jcc.20289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Eastman P, Friedrichs MS, Chodera JD et al (2013) OpenMM 4: a reusable, extensible, hardware independent library for high performance molecular simulation. J Chem Theory Comput 9(1):461–469. doi:10.1021/ct300857j

    Article  CAS  PubMed  Google Scholar 

  123. Piana S, Lindorff-Larsen K, Shaw DE (2011) How robust are protein folding simulations with respect to force field parameterization? Biophys J 100(9):L47–L49. doi:10.1016/j.bpj.2011.03.051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lindorff-Larsen K, Maragakis P, Piana S et al (2012) Systematic validation of protein force fields against experimental data. PLoS One 7(2):e32131. doi:10.1371/journal.pone.0032131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Maier JA, Martinez C, Kasavajhala K et al (2015) ff14SB: improving the accuracy of protein side chain and backbone parameters from ff99SB. J Chem Theory Comput 11(8):3696–3713. doi:10.1021/acs.jctc.5b00255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Huang J, MacKerell AD (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34(25):2135–2145. doi:10.1002/jcc.23354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Robertson MJ, Tirado-Rives J, Jorgensen WL (2015) Improved peptide and protein torsional energetics with the OPLS-AA force field. J Chem Theory Comput 11(7):3499–3509. doi:10.1021/acs.jctc.5b00356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mitsutake A, Sugita Y, Okamoto Y (2001) Generalized-ensemble algorithms for molecular simulations of biopolymers. Biopolymers 60(2):96–123. doi:10.1002/1097-282(2001)60:2<96::Aid-Bip1007>3.0.Co;2-F

  129. Laio A, Parrinello M (2002) Escaping free-energy minima. Proc Natl Acad Sci U S A 99:12562–12566. doi:10.1073/pnas.202427399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Bowman GR, Ensign DL, Pande VS (2010) Enhanced modeling via network theory: adaptive sampling of Markov state models. J Chem Theory Comput 6(3):787–794. doi:10.1021/ct900620b

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Noe F (2008) Probability distributions of molecular observables computed from Markov models. J Chem Phys 128(24):244103. doi:10.1063/1.2916718

    Article  PubMed  CAS  Google Scholar 

  132. Metzner P, Schutte C, Vanden-Eijnden E (2006) Illustration of transition path theory on a collection of simple examples. J Chem Phys 125(8):084110. doi:10.1063/1.2335447

    Article  PubMed  CAS  Google Scholar 

  133. Berezhkovskii A, Hummer G, Szabo A (2009) Reactive flux and folding pathways in network models of coarse-grained protein dynamics. J Chem Phys 130(20):205102. doi:10.1063/1.3139063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Comeau SR, Gatchell DW, Vajda S et al (2004) ClusPro: a fully automated algorithm for protein-protein docking. Nucleic Acids Res 32:W96–W99. doi:10.1093/nar/gkh354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Trott O, Olson AJ (2010) Software news and update AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31(2):455–461. doi:10.1002/jcc.21334

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Friesner RA, Banks JL, Murphy RB et al (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47(7):1739–1749. doi:10.1021/jm0306430

    Article  CAS  PubMed  Google Scholar 

  137. Verdonk ML, Cole JC, Hartshorn MJ et al (2003) Improved protein-ligand docking using GOLD. Proteins 52(4):609–623. doi:10.1002/prot.10465

    Article  CAS  PubMed  Google Scholar 

  138. Coleman RG, Carchia M, Sterling T et al (2013) Ligand pose and orientational sampling in molecular docking. PLoS One 8(10):e75992. doi:10.1371/journal.pone.0075992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

This work is supported by the Hong Kong Research Grant Council [grant numbers 16302214, 609813, HKUST C6009-15G, AoE/M-09/12, M-HKUST601/13, and T13-607/12R to X.H.] and the National Science Foundation of China [grant number 21273188 to X.H.]. The work is also supported by a grant from the PROCORE-France/Hong Kong Joint Research Scheme sponsored by the Research Grants Council and the Consulate General of France in Hong Kong (F-HK29/11T) (X.H. and J.B.). X.G. was supported by funding from King Abdullah University of Science and Technology. This research made use of the resources of the Supercomputing Laboratory at King Abdullah University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Gao , Julie Bernauer or Xuhui Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jiang, H., Zhu, L., Héliou, A., Gao, X., Bernauer, J., Huang, X. (2017). Elucidating Mechanisms of Molecular Recognition Between Human Argonaute and miRNA Using Computational Approaches. In: Schmidt, M. (eds) Drug Target miRNA. Methods in Molecular Biology, vol 1517. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6563-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6563-2_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6561-8

  • Online ISBN: 978-1-4939-6563-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics