Skip to main content

miRNA Targeting Drugs: The Next Blockbusters?

  • Protocol
  • First Online:
Drug Target miRNA

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1517))

Abstract

Only 20 years after the discovery of small non-coding, single-stranded ribonucleic acids, so-called microRNAs (miRNAs), as post-transcriptional gene regulators, the first miRNA-targeting drug Miravirsen for the treatment of hepatitis C has been successfully tested in clinical Phase II trials. Addressing miRNAs as drug targets may enable the cure, or at least the treatment of diseases, which presently seems impossible. However, due to miRNAs’ chemical structure, generation of potential drug molecules with necessary pharmacokinetic properties is still challenging and requires a re-thinking of the drug discovery process. Therefore, this chapter highlights the potential of miRNAs as drug targets, discusses the challenges, and tries to give a complete overview of recent strategies in miRNA drug discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  2. Dykxhoorn DM, Novina CD, Sharp PA (2003) Killing the messenger: short RNAs that silence gene expression. Nat Rev Mol Cell Biol 4:457–467

    Article  CAS  PubMed  Google Scholar 

  3. Fabian MR, Sonenberg N (2012) The mechanisms of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol 19:586–593

    Article  CAS  PubMed  Google Scholar 

  4. Overington JP et al (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  PubMed  Google Scholar 

  5. Hopkins AL, Groom CR (2002) The druggable genome. Nat Rev Drug Discov 1:727–730

    Article  CAS  PubMed  Google Scholar 

  6. Cheng AC et al (2007) Structure-based maximal affinity model predicts small-molecule druggability. Nature Biotech 25:71–75

    Article  Google Scholar 

  7. Schmidt MF (2014) Drug target miRNA: chances and challenges. Trends Biotechnol 32:578–585

    Article  CAS  PubMed  Google Scholar 

  8. Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13:622–638

    Article  CAS  PubMed  Google Scholar 

  9. Hutvagner G, Simard MJ, Mello CC, Zamore PD (2004) Sequence-specific inhibition of small RNA function. PLoS Biol 2, E98

    Article  PubMed  PubMed Central  Google Scholar 

  10. Meister G, Landthaler M, Dorsett Y, Tuschl T (2004) Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. RNA 10:544–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Geary RS (2009) Antisense oligonucleotide pharmacokinetics and metabolism. Expert Opin Drug Metab Toxicol 5:381–391

    Article  CAS  PubMed  Google Scholar 

  12. Lennox KA, Behlke MA (2011) Chemical modification and design of anti-miRNA oligonucleotides. Gene Ther 18:1111–1120

    Article  CAS  PubMed  Google Scholar 

  13. Esau CC (2008) Inhibition of microRNA with antisense oligonucleotides. Methods 44:55–60

    Article  CAS  PubMed  Google Scholar 

  14. Kawasaki AM et al (1993) Uniformly modified 2′-deoxy-2′-fluoro phosphorothioate oligonucleotides as nuclease-resistant antisense compounds with high affinity and specificity for RNA targets. J Med Chem 36:831–841

    Article  CAS  PubMed  Google Scholar 

  15. Rigo F et al (2012) Synthetic oligonucleotides recruit ILF2/3 to RNA transcripts to modulate splicing. Nature Chem Biol 8:5974–5982

    Article  Google Scholar 

  16. Koshkin AA et al (1998) LNA (locked nucleic acid): synthesis of the adenine, cytosine, guanine, 5-methyl cytosine, thymine, and uracil nicyclonucleoside monomers, oligomers, and unprecedented nucleic acid recognition. Tetrahedron 54:3607–3630

    Article  CAS  Google Scholar 

  17. Janssen HL et al (2013) Treatment of HCV infection by targeting microRNA. N Engl J Med 368:1685–1694

    Article  CAS  PubMed  Google Scholar 

  18. Jopling CL et al (2005) Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 309:1577–1581

    Article  CAS  PubMed  Google Scholar 

  19. Lanford RE et al (2010) Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 327:198–201

    Article  CAS  PubMed  Google Scholar 

  20. Machlin ES et al (2011) Masking the 5′ terminal nucleotides of the hepatitis C virus genome by an unconventional microRNA-target RNA complex. Proc Natl Acad Sci USA 108:3193–3198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Shimakami TD et al (2012) Base pairing between hepatitis C virus RNA and microRNA 122 3′ of its seed sequence is essential for genome stabilization and production of infectious virus. J Virol 86:7372–7383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lindow M, Kauppinen S (2012) Discovering the first microRNA-targeted drug. J Cell Biol 199:407–412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lennox KA, Owczarzy R, Thomas DM, Walder JA, Behlke MA (2013) Improved performance of anti-miRNA oligonucleotide using a novel non-nucleotide modifier. Mol Ther Nucleic Acids 2, e117

    Article  PubMed  PubMed Central  Google Scholar 

  24. Krützfeld J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, Stoffel M (2005) Silencing of microRNAs in vivo with antagomirs. Nature 438:685–689

    Article  Google Scholar 

  25. Elmen J et al (2008) LNA-mediated microRNA silencing in non-human primates. Nature 452:896–899

    Article  CAS  PubMed  Google Scholar 

  26. Akinc A et al (2010) Targeted delivery of RNAi therapeutics with endogenous and exogenous ligand-based mechanism. Mol Ther 18:1357–1364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bader AG (2012) miR-34 – a microRNA replacement therapy is headed to the clinic. Front Gene 3:120

    Article  CAS  Google Scholar 

  28. Zhao J et al (2013) In-depth analysis shows synergy between erlotinib and miR-34a. PLoS ONE 9, e89105

    Article  Google Scholar 

  29. Gilleron J et al (2013) Image-based analysis of lipid nanoparticle-mediated siRNA delivery, intracellular trafficking and endosomal escape. Nature Biotech 31:638–646

    Article  CAS  Google Scholar 

  30. Li Z, Yang CS, Nakashima K, Rana TM (2011) Small RNA-mediated regulation of iPS cell generation. EMBO J 30:823–834

    Article  PubMed  PubMed Central  Google Scholar 

  31. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136:215–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sarvestani ST et al (2015) Sequence-dependent off-target inhibition of TLR7/8 sensing by synthetic microRNA inhibitors. Nucleic Acids Res 43:1177–1188

    Article  CAS  PubMed  Google Scholar 

  33. Hornung V et al (2005) Sequence-specific potent induction of IFN-α by short interfering RNA in plasmacytoid dendritic cells through TLR7. Nature Med 11:263–270

    Article  CAS  PubMed  Google Scholar 

  34. Bennett CF, Swayze EE (2010) RNA targeting therapeutics: molecular mechanisms of antisense oligonucleotides as a therapeutic platform. Annu Rev Pharmacol Toxicol 50:259–293

    Article  CAS  PubMed  Google Scholar 

  35. Swayze EE et al (2007) Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. Nucleic Acids Res 35:687–700

    Article  CAS  PubMed  Google Scholar 

  36. Gumireddy K et al (2008) Small-molecule inhibitors of microRNA miR-21 function. Angew Chem Int Ed 47:7482–7484

    Article  CAS  Google Scholar 

  37. Young DD et al (2010) Small molecule modifiers of microRNA miR-122 function for the treatment of hepatitis C virus infection and hepatocellular carcinoma. J Am Chem Soc 132:7976–7981

    Article  CAS  PubMed  Google Scholar 

  38. Shan G et al (2010) A small molecule enhances RNA interference and promotes microRNA processing. Nat Biotechnol 26:933–940

    Article  Google Scholar 

  39. Lu J et al (2005) MicroRNA expression profiles classify human cancers. Nature 435:834–838

    Article  CAS  PubMed  Google Scholar 

  40. Melo S et al (2011) Small molecule enoxacin is a cancer-specific growth inhibitor that acts by enhancing TAR RNA-binding protein 2-mediated microRNA processing. Proc Natl Acad Sci USA 108:4394–4399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Nahar S et al (2014) Anticancer therapeutic potential of quinazoline based small molecules via upregulation of miRNAs. Chem Comm 50:4639–4642

    Article  CAS  PubMed  Google Scholar 

  42. Davies BP, Arenz C (2006) A homogenous assay for microRNA maturation. Angew Chem Int Ed 45:5550–5552

    Article  CAS  Google Scholar 

  43. Bose D et al (2012) The tuberculosis drug streptomycin as a potential cancer therapeutic: inhibition of miR-21 function by directly targeting its precursor. Angew Chem Int Ed 51:1019–1023

    Article  CAS  Google Scholar 

  44. Velagapudi SP et al (2014) Sequence-based design of bioactive small molecules that target precursor microRNAs. Nat Chem Biol 10:291–297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Bose D et al (2013) A molecular-beacon screen for small molecule inhibitors of miRNA maturation. ACS Chem Biol 8:930–938

    Article  CAS  PubMed  Google Scholar 

  46. Neubacher S et al (2011) A rapid assay for miRNA maturation by using unmodified pre-miRNA. ChemBioChem 12:2302–2305

    Article  CAS  PubMed  Google Scholar 

  47. Schirle NT, MacRae IJ (2012) The crystal structure of human Argonaute 2. Science 336:1037–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Elkayam E et al (2012) The structure of human Argonaute-2 in complex with miR20a. Cell 150:100–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Tan GS et al (2012) Small molecule inhibition of RISC loading. ACS Chem Biol 7:403–410

    Article  CAS  PubMed  Google Scholar 

  50. Masciarelli S et al (2014) A small-molecule targeting the microRNA binding domain of Argonaute 2 improves the retinoic acid differentiation response of the acute promyelocytic leukemia cell line NB4. ACS Chem Biol 9:1674–1679

    Article  CAS  PubMed  Google Scholar 

  51. Wang Y et al (2009) Nucleation, propagation, and cleavage of target RNAs in Ago silencing complexes. Nature 461:754–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Kole R, Krainer AR, Altman S (2012) RNA therapeutics: beyond RNA interference and antisense oligonucleotides. Nat Rev Drug Discov 11:125–140

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Chi SW et al (2012) An alternative mode of microRNA target recognition. Nat Struct Mol Biol 19:321–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Kumar S et al (2014) Understanding the effect of LNA and 2′-O methyl modification on the hybridization thermodynamics of miRNA-mRNA pair in the presence and absence of AfPiwi protein. Biochemistry 53:1607–1615

    Article  CAS  PubMed  Google Scholar 

  55. Obad S et al (2011) Silencing of microRNA families by seed-targeting tiny LNAs. Nat Genet 43:371–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmidt MF, Korb O, Abell C (2013) MicroRNA-specific Argonaute 2 protein inhibitors. ACS Chem Biol 8:2122–2126

    Article  CAS  PubMed  Google Scholar 

  57. Matsuyama Y et al (2013) Functional regulation of RNA-induced silencing complex by photoreactive oligonucleotides. Bioorg Med Chem 22:1003–1007

    Article  PubMed  Google Scholar 

  58. Schmidt MF, Rademann J (2009) Dynamic template-assisted strategies in fragment-based drug discovery. Trends Biotechnol 27:512–521

    Article  CAS  PubMed  Google Scholar 

  59. Schmidt MF et al (2008) Sensitized detection of inhibitory fragments and iterative development of non-peptidic protease inhibitors by dynamic ligation screening. Angew Chem Int Ed 47:3275–3278

    Article  CAS  Google Scholar 

  60. Schmidt MF et al (2009) Selective identification of cooperatively binding fragments in a high-throughput ligation assay enables development of a picomolar caspase-3 inhibitor. Angew Chem Int Ed 48:6346–6349

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The author thanks Dr. Rajavel Srinivasan for critical proofreading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco F. Schmidt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Schmidt, M.F. (2017). miRNA Targeting Drugs: The Next Blockbusters?. In: Schmidt, M. (eds) Drug Target miRNA. Methods in Molecular Biology, vol 1517. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6563-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6563-2_1

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6561-8

  • Online ISBN: 978-1-4939-6563-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics