Skip to main content

Gammaretroviral Production and T Cell Transduction to Genetically Retarget Primary T Cells Against Cancer

  • Protocol
  • First Online:
T-Cell Differentiation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1514))

Abstract

Adoptive T cell therapy has demonstrated tremendous outcomes against treatment-refractory leukemias and solid tumor malignancies. As opposed to industry-developed drugs that are manufactured and dispensed to hospitals and/or patients, T cells are produced in academic laboratories for clinical research and are a highly personalized therapy that represents a “living drug.” The technology behind genetic modification of primary T cells has been developed and refined by a few academic medical centers. We anticipate that the exciting results generated by these efforts will lead to further investigation by other academic and industry institutions. To facilitate this adaptation we present optimized protocols for gammaretroviral production, T cell isolation, and genetic modification to create gene-targeted T cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Davila ML, Riviere I, Wang X et al (2014) Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci Transl Med 6:224ra225. doi:10.1126/scitranslmed.3008226

    Article  Google Scholar 

  2. Stevanovic S, Draper LM, Langhan MM et al (2015) Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol 33(14):1543–1550. doi:10.1200/JCO.2014.58.9093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hodi FS, O’Day SJ, McDermott DF et al (2010) Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med 363(8):711–723. doi:10.1056/NEJMoa1003466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Topp MS, Gokbuget N, Zugmaier G et al (2014) Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory b-precursor acute lymphoblastic leukemia. J Clin Oncol 32(36):4134–4140. doi:10.1200/JCO.2014.56.3247

    Article  CAS  PubMed  Google Scholar 

  5. Restifo NP, Dudley ME, Rosenberg SA (2012) Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol 12(4):269–281. doi:10.1038/nri3191

    Article  CAS  PubMed  Google Scholar 

  6. Sadelain M, Riviere I, Brentjens R (2003) Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer 3(1):35–45. doi:10.1038/nrc971

    Article  CAS  PubMed  Google Scholar 

  7. Davila ML, Brentjens R, Wang X et al (2012) How do CARs work?: Early insights from recent clinical studies targeting CD19. Oncoimmunology 1(9):1577–1583. doi:10.4161/onci.22524

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lee DW, Kochenderfer JN, Stetler-Stevenson M et al (2014) T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial. Lancet. doi:10.1016/S0140-6736(14)61403-3

    Google Scholar 

  9. Hollyman D, Stefanski J, Przybylowski M et al (2009) Manufacturing validation of biologically functional T cells targeted to CD19 antigen for autologous adoptive cell therapy. J Immunother 32(2):169–180. doi:10.1097/CJI.0b013e318194a6e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kochenderfer JN, Feldman SA, Zhao Y et al (2009) Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother 32(7):689–702. doi:10.1097/CJI.0b013e3181ac6138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lee J, Sadelain M, Brentjens R (2009) Retroviral transduction of murine primary T lymphocytes. Methods Mol Biol 506:83–96. doi:10.1007/978-1-59745-409-4_7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zheng Z, Chinnasamy N, Morgan RA (2012) Protein L: a novel reagent for the detection of chimeric antigen receptor (CAR) expression by flow cytometry. J Transl Med 10:29. doi:10.1186/1479-5876-10-29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco L. Davila .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Li, G., Park, K., Davila, M.L. (2017). Gammaretroviral Production and T Cell Transduction to Genetically Retarget Primary T Cells Against Cancer. In: Lugli, E. (eds) T-Cell Differentiation. Methods in Molecular Biology, vol 1514. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6548-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6548-9_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6546-5

  • Online ISBN: 978-1-4939-6548-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics