Skip to main content

Developmental and Functional Assays to Study Murine and Human γδ T Cells

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1514))

Abstract

The key roles played by gamma-delta (γδ) T cells in immunity to infection and tumors critically depend on their differentiation into effectors capable of secreting cytokines (such as interferon-γ or interleukin-17), and killing infected or transformed cells. Here we detail the main methods used to investigate the differentiation of γδ T cells from murine or human origin. We describe developmental assays, such as thymic organ cultures (TOCs) and coculture of progenitors cells with OP9-DL1 stomal cells, as well as functional assays typically employed to evaluate γδ T cell cytotoxicity and cytokine production.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Jensen KD, Su X, Shin S et al (2008) Thymic selection determines gammadelta T cell effector fate: antigen-naive cells make interleukin-17 and antigen-experienced cells make interferon gamma. Immunity 29(1):90–100. doi:10.1016/j.immuni.2008.04.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ribot JC, deBarros A, Pang DJ et al (2009) CD27 is a thymic determinant of the balance between interferon-gamma- and interleukin 17-producing gammadelta T cell subsets. Nat Immunol 10(4):427–436. doi:10.1038/ni.1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Strid J, Sobolev O, Zafirova B, Polic B, Hayday A (2011) The intraepithelial T cell response to NKG2D-ligands links lymphoid stress surveillance to atopy. Science 334(6060):1293–1297. doi:10.1126/science.1211250

    Article  CAS  PubMed  Google Scholar 

  4. Rhodes KA, Andrew EM, Newton DJ, Tramonti D, Carding SR (2008) A subset of IL-10-producing gammadelta T cells protect the liver from Listeria-elicited, CD8(+) T cell-mediated injury. Eur J Immunol 38(8):2274–2283. doi:10.1002/eji.200838354

    Article  CAS  PubMed  Google Scholar 

  5. Seo N, Tokura Y, Takigawa M, Egawa K (1999) Depletion of IL-10- and TGF-beta-producing regulatory gamma delta T cells by administering a daunomycin-conjugated specific monoclonal antibody in early tumor lesions augments the activity of CTLs and NK cells. J Immunol 163(1):242–249

    CAS  PubMed  Google Scholar 

  6. Lukens JR, Barr MJ, Chaplin DD, Chi H, Kanneganti TD (2012) Inflammasome-derived IL-1beta regulates the production of GM-CSF by CD4(+) T cells and gammadelta T cells. J Immunol 188(7):3107–3115. doi:10.4049/jimmunol.1103308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Correia DV, Lopes A, Silva-Santos B (2013) Tumor cell recognition by gammadelta T lymphocytes: T-cell receptor vs NK-cell receptors. Oncoimmunology 2(1):e22892. doi:10.4161/onci.22892

    Article  PubMed  PubMed Central  Google Scholar 

  8. Hayday AC (2000) [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 18:975–1026. doi:10.1146/annurev.immunol.18.1.975

    Article  CAS  PubMed  Google Scholar 

  9. Hayday AC (2009) Gammadelta T cells and the lymphoid stress-surveillance response. Immunity 31(2):184–196. doi:10.1016/j.immuni.2009.08.006

    Article  CAS  PubMed  Google Scholar 

  10. Schmolka N, Serre K, Grosso AR et al (2013) Epigenetic and transcriptional signatures of stable versus plastic differentiation of proinflammatory gammadelta T cell subsets. Nat Immunol 14(10):1093–1100. doi:10.1038/ni.2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ribot JC, Ribeiro ST, Correia DV, Sousa AE, Silva-Santos B (2014) Human gammadelta thymocytes are functionally immature and differentiate into cytotoxic type 1 effector T cells upon IL-2/IL-15 signaling. J Immunol 192(5):2237–2243. doi:10.4049/jimmunol.1303119

    Article  CAS  PubMed  Google Scholar 

  12. DeBarros A, Chaves-Ferreira M, d'Orey F, Ribot JC, Silva-Santos B (2011) CD70-CD27 interactions provide survival and proliferative signals that regulate T cell receptor-driven activation of human gammadelta peripheral blood lymphocytes. Eur J Immunol 41(1):195–201. doi:10.1002/eji.201040905

    Article  CAS  PubMed  Google Scholar 

  13. Dieli F, Poccia F, Lipp M et al (2003) Differentiation of effector/memory Vdelta2 T cells and migratory routes in lymph nodes or inflammatory sites. J Exp Med 198(3):391–397. doi:10.1084/jem.20030235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Silva-Santos B, Serre K, Norell H (2015) gammadelta T cells in cancer. Nat Rev Immunol 15(11):683–691. doi:10.1038/nri3904

    Article  CAS  PubMed  Google Scholar 

  15. Gentles AJ, Newman AM, Liu CL et al (2015) The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat Med 21(8):938–945. doi:10.1038/nm.3909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Gomes AQ, Martins DS, Silva-Santos B (2010) Targeting gammadelta T lymphocytes for cancer immunotherapy: from novel mechanistic insight to clinical application. Cancer Res 70(24):10024–10027. doi:10.1158/0008-5472.CAN-10-3236

    Article  CAS  PubMed  Google Scholar 

  17. Cai Y, Shen X, Ding C et al (2011) Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity 35(4):596–610. doi:10.1016/j.immuni.2011.08.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Caccamo N, La Mendola C, Orlando V et al (2011) Differentiation, phenotype, and function of interleukin-17-producing human Vgamma9Vdelta2 T cells. Blood 118(1):129–138. doi:10.1182/blood-2011-01-331298

    Article  CAS  PubMed  Google Scholar 

  19. Wu P, Wu D, Ni C et al (2014) gammadeltaT17 cells promote the accumulation and expansion of myeloid-derived suppressor cells in human colorectal cancer. Immunity 40(5):785–800. doi:10.1016/j.immuni.2014.03.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gomes AQ, Correia DV, Grosso AR et al (2010) Identification of a panel of ten cell surface protein antigens associated with immunotargeting of leukemias and lymphomas by peripheral blood gammadelta T cells. Haematologica 95(8):1397–1404. doi:10.3324/haematol.2009.020602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Michel ML, Pang DJ, Haque SF et al (2012) Interleukin 7 (IL-7) selectively promotes mouse and human IL-17-producing gammadelta cells. Proc Natl Acad Sci U S A 109(43):17549–17554. doi:10.1073/pnas.1204327109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

This work was supported by the European Research Council (CoG_646701 to B.S.-S.); and the Investigator FCT (to J.C.R. and K.S.) programme of Fundação para a Ciência e Tecnologia.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julie C. Ribot or Karine Serre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ribot, J.C., Serre, K., Silva-Santos, B. (2017). Developmental and Functional Assays to Study Murine and Human γδ T Cells. In: Lugli, E. (eds) T-Cell Differentiation. Methods in Molecular Biology, vol 1514. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6548-9_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6548-9_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6546-5

  • Online ISBN: 978-1-4939-6548-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics