Skip to main content

A Dual-Color Reporter Assay of Cohesin-Mediated Gene Regulation in Budding Yeast Meiosis

  • Protocol
  • First Online:
Cohesin and Condensin

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1515))

Abstract

In this chapter, we describe a quantitative fluorescence-based assay of gene expression using the ratio of the reporter green fluorescence protein (GFP) to the internal red fluorescence protein (RFP) control. With this dual-color heterologous reporter assay, we have revealed cohesin-regulated genes and discovered a cis-acting DNA element, the Ty1-LTR, which interacts with cohesin and regulates gene expression during yeast meiosis. The method described here provides an effective cytological approach for quantitative analysis of global gene expression in budding yeast meiosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rupp S (2002) LacZ assays in yeast. Methods Enzymol 350:112–131

    Article  CAS  PubMed  Google Scholar 

  2. Hadjur S, Williams LM, Ryan NK et al (2009) Cohesins form chromosomal cis-interactions at the developmentally regulated IFNG locus. Nature 460:410–413

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Parelho V, Hadjur S, Spivakov M et al (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132:422–433

    Article  CAS  PubMed  Google Scholar 

  4. Nasmyth K (2011) Cohesin: a catenase with separate entry and exit gates? Nat Cell Biol 13:1170–1177

    Article  CAS  PubMed  Google Scholar 

  5. Lin W, Jin H, Liu X et al (2011) Scc2 regulates gene expression by recruiting cohesin to the chromosome as a transcriptional activator during yeast meiosis. Mol Biol Cell 22:1985–1996

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tonkin ET, Wang TJ, Lisgo S et al (2004) NIPBL, encoding a homolog of fungal Scc2-type sister chromatid cohesion proteins and fly Nipped-B, is mutated in Cornelia de Lange syndrome. Nat Genet 36:636–641

    Article  CAS  PubMed  Google Scholar 

  7. Liu J, Zhang Z, Bando M et al (2009) Transcriptional dysregulation in NIPBL and cohesin mutant human cells. PLoS Biol 7, e1000119

    Article  PubMed  PubMed Central  Google Scholar 

  8. Boeke JD, Sandmeyer SB (1991) Yeast transposable elements. In: Broach J, Jones E, Pringle J (eds) The molecular and cellular biology of the yeast Saccharomyces. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, pp 193–261

    Google Scholar 

  9. Servant G, Pennetier C, Lesage P (2008) Remodeling yeast gene transcription by activating the Ty1 long terminal repeat retrotransposon under severe adenine deficiency. Mol Cell Biol 28:5543–5554

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Guthrie C, Fink GR (1991) Guide to yeast genetics and molecular biology. Methods Enzymol 194

    Google Scholar 

  11. Gietz RD, Schiestl RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  CAS  PubMed  Google Scholar 

  12. Cha RS, Weiner BM, Keeney S et al (2000) Progression of meiotic DNA replication is modulated by interchromosomal interaction proteins, negatively by Spo11p and positively by Rec8p. Genes Dev 14:493–503

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Lee BH, Amon A (2003) Role of Polo-like kinase CDC5 in programming meiosis I chromosome segregation. Science 300:482–486

    Article  CAS  PubMed  Google Scholar 

  14. Lin W, Wang M, Jin H et al (2011) Cohesin plays a dual role in gene regulation and sister-chromatid cohesion during meiosis in Saccharomyces cerevisiae. Genetics 187:1041–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Li P, Shao Y, Jin H et al (2015) Ndj1, a telomere-associated protein, regulates centrosome separation in budding yeast meiosis. J Cell Biol 209:247–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Marston AL, Tham WH, Shah H et al (2004) A genome-wide screen identifies genes required for centromeric cohesion. Science 303:1367–1370

    Article  CAS  PubMed  Google Scholar 

  17. Kainth P, Sassi HE, Pena-Castillo L et al (2009) Comprehensive genetic analysis of transcription factor pathways using a dual reporter gene system in budding yeast. Methods 48:258–264

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work was supported by NSF (MCB-1121771) and NIH (GM117102).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Guo Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fan, J., Jin, H., Yu, HG. (2017). A Dual-Color Reporter Assay of Cohesin-Mediated Gene Regulation in Budding Yeast Meiosis. In: Yokomori, K., Shirahige, K. (eds) Cohesin and Condensin. Methods in Molecular Biology, vol 1515. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6545-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6545-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6543-4

  • Online ISBN: 978-1-4939-6545-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics