Skip to main content

Network-Oriented Approaches to Anticancer Drug Response

  • Protocol
  • First Online:
Book cover Cancer Gene Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1513))

Abstract

A long-standing paradigm in drug discovery has been the concept of designing maximally selective drugs to act on individual targets considered to underlie a disease of interest. Nonetheless, although some drugs have proven to be successful, many more potential drugs identified by the “one gene, one drug, one disease" approach have been found to be less effective than expected or to cause notable side effects. Advances in systems biology and high-throughput in-depth genomic profiling technologies along with an analysis of the successful and failed drugs uncovered that the prominent factor to determine drug sensitivity is the intrinsic robustness of the response of biological systems in the face of perturbations. The complexity of the molecular and cellular bases of systems responses to drug interventions has fostered an increased interest in systems-oriented approaches to drug discovery. Consonant with this knowledge of the multifactorial mechanistic basis of drug sensitivity and resistance is the application of network-based approaches for the identification of molecular (multi-)feature signatures associated with desired (multi-)drug phenotypic profiles. This chapter illustrates the principal network analysis and inference techniques which have found application in systems-oriented drug design and considers their benefits and drawbacks in relation to the nature of the data produced by network pharmacology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  CAS  PubMed  Google Scholar 

  2. Barabási AL, Oltvai ZN (2004) Network biology: understanding the cell’s functional organization. Nat Rev Genet 5:101–113

    Article  PubMed  Google Scholar 

  3. Cormen TH, Leiserson CE, Rivest RL, Stein C (2001) Introduction to algorithms, 2nd edn. MIT Press and McGraw-Hill Book Company, Cambridge, MA

    Google Scholar 

  4. Kitano H (2001) Exploring complex networks. Nature 410:268–276

    Article  Google Scholar 

  5. Palla G, Derényi I, Farkas I, Vicsek T (2005) Uncovering the overlapping community structure of complex networks in nature and society. Nature 435:814–818

    Article  CAS  PubMed  Google Scholar 

  6. Al-Lazikani B, Banerji U, Workman P (2012) Combinatorial drug therapy for cancer in the post-genomic era. Nat Biotechnol 30:679–692

    Article  CAS  PubMed  Google Scholar 

  7. Keith CT, Borisy AA, Stockwell BR (2005) Multicomponent therapeutics for networked systems. Nat Rev Drug Discov 4:71–78

    Article  CAS  PubMed  Google Scholar 

  8. Foucquier J, Guedj M (2015) Analysis of drug combinations: current methodological landscape. Pharmacol Res Perspect 3:e00149

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kitano H (2004) Biological robustness. Nat Rev Genet 5:826–837

    Article  CAS  PubMed  Google Scholar 

  10. Stelling J, Sauer U, Szallasi Z et al (2004) Robustness of cellular functions. Cell 118:675–685

    Article  CAS  PubMed  Google Scholar 

  11. Alon U (2007) Network motifs: theory and experimental approaches. Nat Rev Genet 8:450–461

    Article  CAS  PubMed  Google Scholar 

  12. Vidal M, Cusick ME, Barabási AL (2011) Interactome networks and human disease. Cell 144:986–998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Covell DG (2015) Data mining approaches for genomic biomarker development: applications using drug screening data from the cancer genome project and the cancer cell line encyclopedia. PLoS One 10, e0127433

    Article  PubMed  PubMed Central  Google Scholar 

  14. Lamb J, Crawford ED, Peck D et al (2006) The connectivity map: using gene-expression signatures to connect small molecules, genes, and disease. Science 313:1929–1935

    Article  CAS  PubMed  Google Scholar 

  15. Woo JH, Shimoni Y, Yang WS et al (2015) Elucidating compound mechanism of action by network perturbation analysis. Cell 162:441–451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhu M, Gao L, Li X et al (2009) The analysis of the drug-targets based on the topological properties in the human protein-protein interaction network. J Drug Target 17:524–532

    Article  CAS  PubMed  Google Scholar 

  17. Jeong H, Mason SP, Barabśi AL, Oltvai ZN (2001) Lethality and centrality in protein networks. Nature 411:41–42

    Article  CAS  PubMed  Google Scholar 

  18. Khuri S, Wuchty S (2012) Essentiality and centrality in protein interaction networks revisited. BMC Bioinformatics 16:109

    Article  Google Scholar 

  19. Brush ER, Krakauer DC, Flack JC (2013) A family of algorithms for computing consensus about node state from network data. PLoS Comput Biol 9:e1003109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang L, Wang J, Wang H et al (2014) Characterization of essential genes by topological properties in the perturbation sensitivity network. Biochem Biophys Res Commun 448:473–479

    Article  CAS  PubMed  Google Scholar 

  21. Wang X, Thijssen B, Yu H (2013) Target essentiality and centrality characterize drug side effects. PLoS Comput Biol 9:e1003119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Peng Q, Schork NJ (2014) Utility of network integrity methods in therapeutic target identification. Front Genet 5:12

    Article  PubMed  PubMed Central  Google Scholar 

  23. Barzel B, Barabási AL (2013) Universality in network dynamics. Nat Phys 9

    Google Scholar 

  24. Estrada E (2012) The structure of complex networks. Theory and applications, 1st edn. Oxford University Press, Oxford, UK

    Google Scholar 

  25. Sams-Dodd F (2005) Target-based drug discovery: is something wrong? Drug Discov Today 10:139–147

    Article  CAS  PubMed  Google Scholar 

  26. Kitano H (2010) Violations of robustness trade-offs. Mol Syst Biol 6

    Google Scholar 

  27. Kassouf W, Dinney CP, Brown G et al (2005) Uncoupling between epidermal growth factor receptor and downstream signals defines resistance to the antiproliferative effect of gefitinib in bladder cancer cells. Cancer Res 65(10):524–535

    Google Scholar 

  28. Sergina NV, Rausch M, Wang D et al (2007) Escape from her-family tyrosine kinase inhibitor therapy by the kinase-inactive her3. Nature 445:437–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Meng J, Peng H, Dai B et al (2009) High level of akt activity is associated with resistance to mek inhibitor azd6244 (arry-142886). Cancer Biol Ther 8:2073–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Rodrik-Outmezguine VS, Chandarlapaty S, Pagano NC et al (2011) mTOR kinase inhibition causes feedback-dependent biphasic regulation of akt signaling. Cancer Discov 1:248–259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. FitzGerald GA, Patrono C (2001) The coxibs, selective inhibitors of cyclooxygenase-2. N Engl J Med 345:433–442

    Article  CAS  PubMed  Google Scholar 

  32. Ito T, Ando H, Suzuki T et al (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345–1350

    Article  CAS  PubMed  Google Scholar 

  33. Jia J, Zhu F, Ma X et al (2009) Mechanisms of drug combinations: interaction and network perspectives. Nat Rev Drug Discov 8:111–128

    Article  CAS  PubMed  Google Scholar 

  34. Modi S, Stopeck A, Linden H et al (2011) Hsp90 inhibition is effective in breast cancer: a phase ii trial of tanespimycin (17-aag) plus trastuzumab in patients with her2-positive metastatic breast cancer progressing on trastuzumab. Clin Cancer Res 17:5132–5139

    Article  CAS  PubMed  Google Scholar 

  35. Nahta R, Hung MC, Esteva FJ (2004) The her-2-targeting antibodies trastuzumab and pertuzumab synergistically inhibit the survival of breast cancer cells. Cancer Res 64:2343–2346

    Article  CAS  PubMed  Google Scholar 

  36. Meng J, Dai B, Fang B et al (2010) Combination treatment with mek and akt inhibitors is more effective than each drug alone in human non-small cell lung cancer in vitro and in vivo. Cell 5:e14124

    CAS  Google Scholar 

  37. Hopkins AL (2008) Network pharmacology: the next paradigm in drug discovery. Nat Chem Biol 4:682–690

    Article  CAS  PubMed  Google Scholar 

  38. Pe’er D, Hacohen N (2011) Principles and strategies for developing network models in cancer. Cell 144:864–873

    Article  PubMed  PubMed Central  Google Scholar 

  39. Zotenko E, Mestre J, O’Leary DP et al (2008) Why do hubs in the yeast protein interaction network tend to be essential: reexamining the connection between the network topology and essentiality. PLoS Comput Biol 4:e1000140

    Article  PubMed  PubMed Central  Google Scholar 

  40. Yu H, Kim PM, Sprecher E et al (2007) The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol 3:e59

    Article  PubMed  PubMed Central  Google Scholar 

  41. Hwang WC, Zhang A, Ramanathan M (2008) Identification of information flow-modulating drug targets: a novel bridging paradigm for drug discovery. Clin Pharmacol Ther 84:563–572

    Article  CAS  PubMed  Google Scholar 

  42. Nacher JC, Schwartz JM (2008) A global view of drug-therapy interactions. BMC Pharmacol 8

    Google Scholar 

  43. Almaas E, Kovács B, Vicsek T et al (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427:839–843

    Article  CAS  PubMed  Google Scholar 

  44. Csermely P (2004) Strong links are important, but weak links stabilize them. Trends Biochem Sci 29:331–334

    Article  CAS  PubMed  Google Scholar 

  45. Zhang X, Zhang Z, Zhao H et al (2014) Extracting the globally and locally adaptive backbone of complex networks. PLoS One 9:e100428

    Article  PubMed  PubMed Central  Google Scholar 

  46. Estrada E, Hatano N (2010) A vibrational approach to node centrality and vulnerability in complex networks. Physica A 389:3648–3660

    Article  Google Scholar 

  47. Birtwistle MR, Hatakeyama M, Yumoto N et al (2007) Ligand-dependent responses of the erbb signaling network: experimental and modeling analyses. Mol Syst Biol 3:144

    Article  PubMed  PubMed Central  Google Scholar 

  48. Iadevaia S, Lu Y, Morales FC et al (2010) Identification of optimal drug combinations targeting cellular networks: integrating phospho-proteomics and computational network analysis. Cancer Res 70:6704–6714

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Chou IC, Voit EO (2009) Recent developments in parameter estimation and structure identification of biochemical and genomic systems. Math Biosci 219:57–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu Y, Gunawan R (2014) Parameter estimation of dynamic biological network models using integrated fluxes. BMC Syst Biol 8:127

    Article  PubMed  PubMed Central  Google Scholar 

  51. Faratian D, Goltsov A, Lebedeva G et al (2009) Systems biology reveals new strategies for personalizing cancer medicine and confirms the role of pten in resistance to trastuzumab. Cancer Res 69:6713–6720

    Article  CAS  PubMed  Google Scholar 

  52. Morris MK, Saez-Rodriguez J, Sorger PK, Lauffenburger DA (2010) Logic-based models for the analysis of cell signaling networks. Biochemistry 49:3216–3224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Lee MJ, Ye AS, Gardino AK et al (2012) Sequential application of anticancer drugs enhances cell death by rewiring apoptotic signaling networks. Cell 149:780–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Sahin O, Fröhlich H, Löbke C et al (2009) Modeling ERBB receptor-regulated G1/S transition to find novel targets for de novo trastuzumab resistance. BMC Syst Biol 3:1

    Article  PubMed  PubMed Central  Google Scholar 

  55. Aldridge BB, Saez-Rodriguez J, Muhlich JL et al (2009) Fuzzy logic analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. PLoS Comput Biol 5:e1000340

    Article  PubMed  PubMed Central  Google Scholar 

  56. Sachs K, Perez O, Pe’er D et al (2005) Causal protein-signaling networks derived from multiparameter single-cell data. Science 308:523–529

    Article  CAS  PubMed  Google Scholar 

  57. Barretina J, Caponigro G, Stransky N et al (2012) The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature 483:603–607

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Shoemaker RH (2006) The nci60 human tumour cell line anticancer drug screen. Nat Rev Cancer 6:813–823

    Article  CAS  PubMed  Google Scholar 

  59. Pal R, Berlow N (2012) A kinase inhibition map approach for tumor sensitivity prediction and combination therapy design for targeted drugs. Pac Symp Biocomput. pp 351–362

    Google Scholar 

  60. Tang J, Karhinen L, Xu T et al (2013) Target inhibition networks: Predicting selective combinations of druggable targets to block cancer survival pathways. PLoS Comput Biol 9:e1003226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ranjan G, Zhang ZL (2013) Geometry of complex networks and topological centrality. Physica A 392:3833–3845

    Article  Google Scholar 

  62. Estrada E, Hatano H (2010) Resistance distance, information centrality, node vulnerability and vibrations in complex networks. In: Estrada E, Fox M, Higham D, Oppo GL (eds) Network science: complexity in nature and technology. Springer, New York, pp 13–29

    Chapter  Google Scholar 

  63. Yang W, Soares J, Greninger P et al (2013) Genomics of drug sensitivity in cancer (gdsc): a resource for therapeutic biomarker discovery in cancer cells. Nucleic Acids Res 41(Database issue):D955–61

    Article  CAS  PubMed  Google Scholar 

  64. Cappuccio A, Zollinger R, Schenk M et al (2015) Combinatorial code governing cellular responses to complex stimuli. Nat Commun 6:e0127433

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Re .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lecca, P., Re, A. (2017). Network-Oriented Approaches to Anticancer Drug Response. In: Kasid, U., Clarke, R. (eds) Cancer Gene Networks. Methods in Molecular Biology, vol 1513. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6539-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6539-7_8

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6537-3

  • Online ISBN: 978-1-4939-6539-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics