Advertisement

ANXA7-GTPase as Tumor Suppressor: Mechanisms and Therapeutic Opportunities

  • Ximena Leighton
  • Ofer Eidelman
  • Catherine Jozwik
  • Harvey B. Pollard
  • Meera SrivastavaEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1513)

Abstract

Chromosomal abnormalities, including homozygous deletions and loss of heterozygosity at 10q, are commonly observed in most human tumors, including prostate, breast, and kidney cancers. The ANXA7-GTPase is a tumor suppressor, which is frequently inactivated by genomic alterations at 10q21. In the last few years, considerable amounts of data have accumulated describing inactivation of ANXA7-GTPase in a variety of human malignancies and demonstrating the tumor suppressor potential of ANXA7-GTPase. ANXA7-GTPase contains a calcium binding domain that classifies it as a member of the annexin family. The cancer-specific expression of ANXA7-GTPase, coupled with its importance in regulating cell death, cell motility, and invasion, makes it a useful diagnostic marker of cancer and a potential target for cancer treatment. Recently, emerging evidence suggests that ANXA7-GTPase is a critical factor associated with the metastatic state of several cancers and can be used as a risk biomarker for HER2 negative breast cancer patients. Cross talk between ANXA7, PTEN, and EGFR leads to constitutive activation of PI3K-AKT signaling, a central pathway of tumor cell survival and proliferation. This review focuses on the recent progress in understanding the tumor suppressor functions of ANXA7-GTPase emphasizing the role of this gene in Ca2+ metabolism, and exploring opportunities for function as an example of a calcium binding GTPase acting as a tumor suppressor and opportunities for ANXA7-GTPase gene cancer therapy.

Key words

ANXA7-GTPase Tumor suppressor gene Cancer Calcium Apoptosis 

References

  1. 1.
    Shen WP, Young RF, Walter BN et al (1990) Molecular analysis of a myxoid chondrosarcoma with rearrangements of chromosomes 10 and 22. Cancer Genet Cytogenet 45:207–215CrossRefPubMedGoogle Scholar
  2. 2.
    Jenkins RB, Hay ID, Herath JF et al (1990) Frequent occurrence of cytogenetic abnormalities in sporadic nonmedullary thyroid carcinoma. Cancer 66:1213–1220CrossRefPubMedGoogle Scholar
  3. 3.
    Morita R, Saito S, Ishikawa J et al (1991) Common regions of deletion on chromosomes 5q, 6q and 10q in renal cell carcinoma. Cancer Res 51:5817–5820PubMedGoogle Scholar
  4. 4.
    Shah NK, Wagner J, Santos G, Griffin CA (1992) Karyotype at relapse following allogeneic bone marrow transplantation for chronic myelogenous leukemia. Cancer Genet Cytogenet 61:183–192CrossRefPubMedGoogle Scholar
  5. 5.
    Oberstrass J, Ring GU, Vogeley KT et al (1994) Allelieuntersuchungen auf Chomosom 10q21-26 in malignen Gliomen. Verh Dtsch Ges Pathol 78:413–417PubMedGoogle Scholar
  6. 6.
    Steck PA, Lignon AH, Cheong P et al (1995) Two tumor suppressive loci on chromosome 10 involved in human glioblastoma. Genes Chromosomes Cancer 12:255–261CrossRefPubMedGoogle Scholar
  7. 7.
    Solic N, Collins JE, Richter A et al (1995) Two newly established cell lines derived from the same colonic adenocarcinoma exhibit differences in EGF-receptor ligand and adhesion molecule expression. Int J Cancer 62:48–57CrossRefPubMedGoogle Scholar
  8. 8.
    Petersen S, Wolf G, Bockmuhl U et al (1998) Allelic loss on chromosome 10q in human lung cancer: association with tumour progression and metastatic phenotype. Br J Cancer 77:270–276CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Piao Z, Park C, Park JH, Kim H (1998) Allotype analysis of hepatocellular carcinoma. Int J Cancer 75:29–33CrossRefPubMedGoogle Scholar
  10. 10.
    Lacombe L, Orlow I, Reuter VE et al (1996) Microsatellite instability and deletion analysis of chromosome 10 in human prostate cancer. Int J Cancer 69:110–113CrossRefPubMedGoogle Scholar
  11. 11.
    Li J, Yen C, Liaw D et al (1997) PTEN, a putative protein tyrosine phosphatase gene mutated in human brain, breast, and prostate cancer. Science 275:1943–1947CrossRefPubMedGoogle Scholar
  12. 12.
    Maier D, Zhang Z, Taylor E et al (1998) Somatic deletion mapping on chromosome 10 and sequence analysis of PTEN/MMAC1 point to the 10q25-26 region as the primary target in low grade and high grade gliomas. Oncogene 16:3331–3335CrossRefPubMedGoogle Scholar
  13. 13.
    Srivastava M, Bubendorf L, Nolan L et al (2001) ANXA7, a candidate tumor-suppressor gene for prostate cancer. Proc Natl Acad Sci U S A 98:4575–4578CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Leighton X, Srikantan V, Pollard HB et al (2004) Significant allelic loss of ANXA7 region (10q21) in hormone receptor negative breast carcinomas. Can Lett 210:239–244CrossRefGoogle Scholar
  15. 15.
    Klee CB (1988) Ca2+-dependent phospholipid- (and membrane-)binding proteins. Biochemistry 27:6645–6653CrossRefPubMedGoogle Scholar
  16. 16.
    Raynal P, Pollard HB (1994) Annexins: the problem of assessing the biological role for a gene family of multifunctional calcium-and phospholipid-binding proteins. BBA Biomembranes 1197:63–93PubMedGoogle Scholar
  17. 17.
    Smith PD, Moss SE (1994) Structural evolution of the annexin supergene family. Trends Genet 10:241–246CrossRefPubMedGoogle Scholar
  18. 18.
    Flower RJ, Rothwell NJ (1994) Lipocortin-1: cellular mechanisms and clinical relevance. Trends Pharmacol Sci 15:71–76CrossRefPubMedGoogle Scholar
  19. 19.
    McKanna JA (1995) Lipocortin 1 in apoptosis: mammary regression. Anat Rec 242:1–10CrossRefPubMedGoogle Scholar
  20. 20.
    Rothhut B (1997) Participation of annexins in protein phosphorylation. Cell Mol Life Sci 53:522–526CrossRefPubMedGoogle Scholar
  21. 21.
    Gerke V, Moss SE (2002) Annexins: from structure to function. Physiol Rev 82:331–371CrossRefPubMedGoogle Scholar
  22. 22.
    Pollard HB, Rojas E (1988) Calcium acivated ANXA7 forms highly selective, voltage-gated channels in phosphatidylserine bilayer membranes. Proc Natl Acad Sci U S A 85:2974–2978CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Kubista H, Hawkins TE, Patel DR et al (1999) Annexin 5 mediates a peroxide-induced Ca(2+) influx in B cells. Curr Biol 9:1403–1406CrossRefPubMedGoogle Scholar
  24. 24.
    Paweletz CP, Ornstein DK, Roth MJ et al (2000) Loss of annexin 1 correlates with early onset of tumorigenesis in esophageal and prostate carcinoma. Cancer Res 60:6293–6297PubMedGoogle Scholar
  25. 25.
    Chetcuti A, Margan SH, Russell P et al (2001) Loss of annexin II heavy and light chains in prostate cancer and its precursors. Cancer Res 61:6331–6334PubMedGoogle Scholar
  26. 26.
    Kang JS, Calvo BF, Maygarden SJ et al (2002) Dysregulation of annexin I protein expression in high-grade prostatic intraepithelial neoplasia and prostate cancer. Clin Cancer Res 8:117–123PubMedGoogle Scholar
  27. 27.
    Xin W, Rhodes DR, Ingold C et al (2003) Dysregulation of the annexin family protein family is associated with prostate cancer progression. Am J Pathol 162:255–261CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Smitherman AB, Mohler JL, Maygarden SJ, Ornstein DK (2004) Expression of annexin I, II and VII proteins in androgen stimulated and recurrent prostate cancer. J Urol 171:916–920CrossRefPubMedGoogle Scholar
  29. 29.
    Yadav AK, Renfrow JJ, Scholtens DM (2009) Monosomy of chromosome 10 associated with dysregulation of epidermal growth factor signaling in glioblastomas. JAMA 302:276–289CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Bredel M, Scholtens DM, Harsh GR (2009) A network model of a cooperative genetic landscape in brain tumors. JAMA 302:261–275CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Kataoka TR, Ito A, Asada H (2000) Annexin VII as a novel marker for invasive phenotype of malignant melanoma. Jpn J Cancer Res 91:75–83CrossRefPubMedGoogle Scholar
  32. 32.
    Shirvan A, Srivastava M, Wang MG et al (1994) Divergent Structure of the human ANXA7 (annexin VII) gene and assignment to chromosome 10. Biochemistry 33:6888–6901CrossRefPubMedGoogle Scholar
  33. 33.
    Zhang-Keck Z-Y, Burns AL, Pollard HB (1993) Mouse ANXA7 (annexin VII) polymorphisms and phylogenetic comparison with other ANXA7s. Biochem J 289:735–741CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Zhang-Keck Z-Y, Srivastava M, Kozak CA et al (1994) Genomic organization and chromosomal localization of the mouse ANXA7 (annexin VII) gene. Biochem J 301:835–845CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Srivastava M, Zhang-Keck ZY, Caohuy H et al (1996) Novel isoforms of ANXA7 in Xenopus laevis: multiple tandem PGQM repeats distinguish mRNA’s in specific adult tissues and embryonic stages. Biochem J 316:729–736CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Doring V, Schleicher M, Noegel AA (1991) Dictyostelium annexin VII (ANXA7). J Biol Chem 266:17509–17515PubMedGoogle Scholar
  37. 37.
    Gerke V (1991) Identification of a homologue for annexin VII (synexin) in Dictyostelium discoideum. J Biol Chem 266:1697–1700PubMedGoogle Scholar
  38. 38.
    Sun M-Z, Liu S, Tang J (2009) Targeting annexin A7 in hepatocarcinoma lymphatic metastasis. Chin J Lung Cancer 12:633–634Google Scholar
  39. 39.
    Gong X, Tang J, Geng X (2009) Expression and significance of Annex in A7 in gastric cancer and lymphatic metastasis. Int J Pathol Clin Med 29:369–373Google Scholar
  40. 40.
    Yang M, Liang Q (2011) Study the relationship between the expression of Annexin A7 and CT of nasopharyngeal carcinoma. J Chin Clin Med Imaging 22:6–9Google Scholar
  41. 41.
    Jimenez CR, Knol JC, Meijer GA (2010) Proteomics of colorectal cancer: overview of discovery studies and identification of commonly identified cancer-associated proteins and candidate CRC serum markers. J Proteomics 73:1873–1895CrossRefPubMedGoogle Scholar
  42. 42.
    Srivastava M, Torosyan Y, Raffeld M (2007) ANXA7 expression represents hormonerelevant tumor suppression in different cancers. Int J Cancer 121:2628–2636CrossRefPubMedGoogle Scholar
  43. 43.
    Guo C, Liu S, Greenway F, Sun M-Z (2013) Potential role of annexin A7 in cancers. Clin Chim Acta 423:83–89CrossRefPubMedGoogle Scholar
  44. 44.
    Srivastava M, Bubendorf L, Raffeld M et al (2004) Prognostic impact of ANXA7-GTPase in metastatic and HER2 negative breast cancer patients. Clin Cancer Res 7:2344–2350CrossRefGoogle Scholar
  45. 45.
    Srivastava M, Bubendorf L, Nolan L et al (2001) ANXA7 as a biomarker in prostate and breast cancer progression. Dis Markers 17:115–120CrossRefPubMedGoogle Scholar
  46. 46.
    Bubendorf L, Sauter G, Moch H et al (1996) Prognostic significance of Bcl-2 in clinically localized prostate cancer. Am J Pathol 148:1557–1565PubMedPubMedCentralGoogle Scholar
  47. 47.
    Silvestrini R, Veneroni S, Daidone MG et al (1994) The Bcl-2 protein: a prognostic indicator strongly related to p53 protein in lymph node-negative breast cancer patients. J Natl Cancer Inst 86:499–504CrossRefPubMedGoogle Scholar
  48. 48.
    Villar E, Redondo M, Rodrigo I et al (2001) Bcl-2 expression and apoptosis in primary and metastatic breast carcinomas. Tumour Biol 22:137–145CrossRefPubMedGoogle Scholar
  49. 49.
    Bonkhoff H, Remberger K (1996) Differentiation pathways and histogenetic aspects of normal and abnormal prostatic growth: a stem cell model. Prostate 28:98–106CrossRefPubMedGoogle Scholar
  50. 50.
    Li P, Barraclough R, Fernig DG et al (1998) Stem cells in breast epithelia. Int J Exp Pathol 79:193–206CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Feuerhake F, Sigg W, Höfter EA et al (2000) Immunohistochemical analysis of Bcl-2 and Bax expression in relation to cell turnover and epithelial differentiation markers in the non-lactating human mammary gland epithelium. Cell Tissue Res 299:47–58CrossRefPubMedGoogle Scholar
  52. 52.
    Srivastava M, Montagna C, Leighton X et al (2003) Haploinsufficiency of ANXA7 tumor suppressor gene and consequent genomic instability promotes tumorigenesis in the ANXA7(+/−) mouse. Proc Natl Acad Sci U S A 100:14287–14292CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Srivastava M, Atwater I, Glasman M et al (1999) Defects in IP3 receptor expression, Ca2+-signaling and insulin secretion in the ANXA7 (+/−) knockout mouse. Proc Natl Acad Sci U S A 96:13783–13788CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Srivastava M, Kumar P, Leighton X et al (2002) Influence of the Anx7 +/− knockout mutation and fasting stress on the genomics of the mouse adrenal gland. Ann N Y Acad Sci 971:53–60CrossRefPubMedGoogle Scholar
  55. 55.
    Kim T, Tao-Cheng JH, Eiden LE, Loh YP (2002) Large dense-core secretory granule biogenesis is under the control of chromogranin A in neuroendocrine cells. Ann N Y Acad Sci 971:323–331CrossRefPubMedGoogle Scholar
  56. 56.
    Goping G, Pollard HB, Srivastava M, Leapman R (2003) Mapping protein expression in mouse pancreatic islets by immunolabeling and electron energy loss spectrum-imaging. Microsc Res Tech 61:448–456CrossRefPubMedGoogle Scholar
  57. 57.
    Srivastava M, Eidelman O, Leighton X et al (2002) ANXA7 is required for nutritional control of gene expression in mouse pancreatic islets of Langerhans. Mol Med 8:781–797PubMedPubMedCentralGoogle Scholar
  58. 58.
    Furuya Y, Lundmo P, Short AD et al (1994) The role of calcium, pH, and cell proliferation in the programmed (apoptotic) death of androgen independent prostatic cancer cells induced by thapsigargin. Cancer Res 54: 6167–6175PubMedGoogle Scholar
  59. 59.
    Kyprianou N, Bains AK, Jacobs SC (1994) Induction of apoptosis in androgen-independent human prostate cancer cells undergoing thymineless death. Prostate 25: 66–75CrossRefPubMedGoogle Scholar
  60. 60.
    Wertz IE, Dixit VM (2000) Characterization of calcium release-activated apoptosis of LnCaP prostate cancer cells. J Biol Chem 275:11470–11477CrossRefPubMedGoogle Scholar
  61. 61.
    Kass GE, Orrenius S (1999) Calcium signaling and cytotoxicity. Environ Health Perspect 107:25–35CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Scoltock AB, Bortner CD, St J, Bird G et al (2000) A selective requirement for elevated calcium in DNA degradation, but not early events in anti-Fas-induced apoptosis. J Biol Chem 275:30586–30596CrossRefPubMedGoogle Scholar
  63. 63.
    Lin XS, Denmeade SR, Cisek L, Isaacsm JT (1997) Mechanism and role of growth arrest in programmed (apoptotic) death of prostatic cancer cells induced by thapsigargin. Prostate 33:201–207CrossRefPubMedGoogle Scholar
  64. 64.
    Tombal B, Weeraratna AT, Denmeade SR, Isaacs JT (2000) Thapsigargin induces a calmodulin/calcineurin-dependent apoptotic cascade responsible for the death of prostatic cancer cells. Prostate 43:303–317CrossRefPubMedGoogle Scholar
  65. 65.
    Furuya Y, Ohta S, Ito H (1997) Apoptosis of androgen-independent mammary and prostate cell lines induced by topoisomerase inhibitors: common pathway of gene regulation. Anticancer Res 17:2089–2093PubMedGoogle Scholar
  66. 66.
    Szalai G, Krishnamurthy R, Hajnóczky G (1999) Apoptosis driven by IP (3)-linked mitochondrial calcium signals. EMBO J 18:6349–6361CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ximena Leighton
    • 1
  • Ofer Eidelman
    • 1
  • Catherine Jozwik
    • 1
  • Harvey B. Pollard
    • 1
  • Meera Srivastava
    • 1
    Email author
  1. 1.Department of Anatomy, Physiology and Genetics, Institute for Molecular Medicine, Center for Medical ProteomicsUniformed Services University School of MedicineBethesdaUSA

Personalised recommendations