Emerging Methods in Chemoproteomics with Relevance to Drug Discovery

  • Chuong Nguyen
  • Graham M. West
  • Kieran F. GeogheganEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1513)


A powerful interplay exists between the recognition of gene families, sensitive techniques in proteomics, and the interrogation of protein function using chemical probes. The most prominent methods, such as affinity capture, activity-based protein profiling and photoaffinity labeling, are extensively reviewed in the literature. Here we briefly review additional methods developed in the past 15 years. These include “stability proteomics” methods such as proteomically analyzed cellular thermal shift assays and the use of chemical oxidation as a probe of structure, the use of multiple bead-linked kinase inhibitors to analyze inhibitor specificities, and advances in the use of proteolysis-targeting chimeras for selective protein elimination.

Key words

Chemoproteomics CETSA SPROX DARTS LiP-SRM Proteomics Kinobeads PROTAC 


  1. 1.
    O’Farrell PH (2008) The pre-omics era: the early days of two-dimensional gels. Proteomics 8:4842–4852Google Scholar
  2. 2.
    Henzel W, Watanabe C, Stults J (2003) Protein identification: the origins of peptide mass fingerprinting. J Am Soc Mass Spectrom 14:931–942CrossRefPubMedGoogle Scholar
  3. 3.
    Patterson SD, Aebersold RH (2003) Proteomics: the first decade and beyond. Nat Genet 33:311–323CrossRefPubMedGoogle Scholar
  4. 4.
    Gillette MA, Carr SA (2013) Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nat Methods 10:28–34CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Cohen J (2001) The proteomics payoff. Technol Rev 104:54–60Google Scholar
  6. 6.
    Ito T, Ando H, Suzuki T et al (2010) Identification of a primary target of thalidomide teratogenicity. Science 327:1345–1350CrossRefPubMedGoogle Scholar
  7. 7.
    Geoghegan KF, Johnson DS (2010) Chemical proteomic technologies for drug target identification. Annu Rep Med Chem 45:345–360CrossRefGoogle Scholar
  8. 8.
    Niphakis MJ, Cravatt BF (2014) Enzyme inhibitor discovery by activity-based protein profiling. Annu Rev Biochem 83:341–377CrossRefPubMedGoogle Scholar
  9. 9.
    Cravatt BF, Wright AT, Kozarich JW (2008) Activity-based protein profiling: from enzyme chemistry to proteomic chemistry. Annu Rev Biochem 77:383–414CrossRefPubMedGoogle Scholar
  10. 10.
    Molina DM, Jafari R, Ignatushchenko M et al (2013) Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341:84–87CrossRefGoogle Scholar
  11. 11.
    Savitski MM, Reinhard FBM, Franken H et al (2014) Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346:55CrossRefGoogle Scholar
  12. 12.
    Adhikari J, West GM, Fitzgerald MC (2015) Global analysis of protein folding thermodynamics for disease state characterization. J Proteome Res 14:2287–2297CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Strickland EC, Geer MA, Tran DT et al (2013) Thermodynamic analysis of protein-ligand binding interactions in complex biological mixtures using the stability of proteins from rates of oxidation. Nat Protoc 8:148–161CrossRefPubMedGoogle Scholar
  14. 14.
    West GM, Tang L, Fitzgerald MC (2008) Thermodynamic analysis of protein stability and ligand binding using a chemical modification- and mass spectrometry-based strategy. Anal Chem 80:4175–4185CrossRefPubMedGoogle Scholar
  15. 15.
    Lomenick B, Olsen RW, Huang J (2011) Identification of direct protein targets of small molecules. ACS Chem Biol 6:34–46CrossRefPubMedGoogle Scholar
  16. 16.
    Lomenick B, Hao R, Jonai N et al (2009) Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci U S A 106:21984–21989CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Liu PF, Kihara D, Park C (2011) Energetics-based discovery of protein-ligand interactions on a proteomic scale. J Mol Biol 408:147–162CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    West GM, Tucker CL, Xu T et al (2010) Quantitative proteomics approach for identifying protein-drug interactions in complex mixtures using protein stability measurements. Proc Natl Acad Sci U S A 107:9078–9082CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Zhu MM, Rempel DL, Du Z, Gross ML (2003) Quantification of protein-ligand interactions by mass spectrometry, titration, and H/D exchange: PLIMSTEX. J Am Chem Soc 125:5252–5253CrossRefPubMedGoogle Scholar
  20. 20.
    Tang L, Sundaram S, Zhang J et al (2013) Conformational characterization of the charge variants of a human IgG1 monoclonal antibody using H/D exchange mass spectrometry. MAbs 5:114–125CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Liyanage R, Devarapalli N, Puckett LM (2009) Comparison of two ESI MS based H/D exchange methods for extracting protein folding energies. Int J Mass Spectrom 287:96–104CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Cohen P (2002) Protein kinases—the major drug targets of the twenty-first century? Nat Rev Drug Discov 1:309–315CrossRefPubMedGoogle Scholar
  23. 23.
    Faivre S, Demetri G, Sargent W, Raymond E (2007) Molecular basis for sunitinib efficacy and future clinical development. Nat Rev Drug Discov 6:734–745CrossRefPubMedGoogle Scholar
  24. 24.
    Karaman MW, Herrgard S, Treiber DK et al (2008) A quantitative analysis of kinase inhibitor selectivity. Nat Biotechnol 26:127–132CrossRefPubMedGoogle Scholar
  25. 25.
    Patricelli MP, Szardenings AK, Liyanage M et al (2007) Functional interrogation of the kinome using nucleotide acyl phosphates. Biochemistry 46:350–358CrossRefPubMedGoogle Scholar
  26. 26.
    Bantscheff M, Eberhard D, Abraham Y et al (2007) Quantitative chemical proteomics reveals mechanisms of action of clinical ABL kinase inhibitors. Nat Biotechnol 25:1035–1044CrossRefPubMedGoogle Scholar
  27. 27.
    Ross PL, Huang YN, Marchese JN et al (2004) Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. Mol Cell Proteomics 3:1154–1169CrossRefPubMedGoogle Scholar
  28. 28.
    Médard G, Pachl F, Ruprecht B et al (2015) Optimized chemical proteomics assay for kinase inhibitor profiling. J Proteome Res 14:1574–1586CrossRefPubMedGoogle Scholar
  29. 29.
    Becher I, Savitski MM, Savitski MF et al (2013) Affinity profiling of the cellular kinome for the nucleotide cofactors ATP, ADP, and GTP. ACS Chem Biol 8:599–607CrossRefPubMedGoogle Scholar
  30. 30.
    Grossmann J, Roschitzki B, Panse C et al (2010) Implementation and evaluation of relative and absolute quantification in shotgun proteomics with label-free methods. J Proteomics 73:1740–1746CrossRefPubMedGoogle Scholar
  31. 31.
    Cox J, Mann M (2008) MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol 26:1367–1372CrossRefPubMedGoogle Scholar
  32. 32.
    Lemeer S, Zörgiebel C, Ruprecht B et al (2013) Comparing immobilized kinase inhibitors and covalent ATP probes for proteomic profiling of kinase expression and drug selectivity. J Proteome Res 12:1723–1731CrossRefPubMedGoogle Scholar
  33. 33.
    Cohen P, Tcherpakov M (2010) Will the ubiquitin system furnish as many drug targets as protein kinases? Cell 143:686–693CrossRefPubMedGoogle Scholar
  34. 34.
    Krönke J, Fink EC, Hollenbach PW et al (2015) Lenalidomide induces ubiquitination and degradation of CK1α in del(5q) MDS. Nature 523:183–188CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Zhou P, Bogacki R, McReynolds L, Howley PM (2000) Harnessing the ubiquitination machinery to target the degradation of specific cellular proteins. Mol Cell 6:751–756CrossRefPubMedGoogle Scholar
  36. 36.
    Carmony KC, Kim KB (2012) PROTAC-induced proteolytic targeting. Methods Mol Biol 832:627–638CrossRefPubMedGoogle Scholar
  37. 37.
    Sakamoto KM (2010) Protacs for treatment of cancer. Pediatr Res 67:505–508CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bondeson DP, Mares A, Smith IED et al (2015) Catalytic in vivo protein knockdown by small-molecule PROTACs. Nat Chem Biol 11:611–617CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Lu J, Qian Y, Altieri M et al (2015) Hijacking the E3 ubiquitin ligase cereblon to efficiently target BRD4. Chem Biol 22:755–763CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Chuong Nguyen
    • 1
  • Graham M. West
    • 1
  • Kieran F. Geoghegan
    • 1
    Email author
  1. 1.Structural Biology and BiophysicsPfizer Worldwide ResearchGrotonUSA

Personalised recommendations