Advertisement

Chemical Synthesis of Activity-Based Diubiquitin Probes

  • Guorui Li
  • Libo Yuan
  • Zhihao ZhuangEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1513)

Abstract

Activity-based diubiquitin probes are highly useful in probing the deubiquitinase (DUB) activity and ubiquitin chain linkage specificity. Here we describe a detailed protocol to synthesize a new class of diubiquitin DUB probes. In this method, two ubiquitin moieties are connected through a linker resembling the native linkage in size and containing a Michael acceptor for trapping the DUB active-site cysteine. Detailed procedures for generating the linker molecule are also described.

Key words

Activity-based probe Diubiquitin probe Chemical ligation DUB Ubiquitin chain Linkage specificity 

Notes

Acknowledgment

This work was supported, in part, by the US NIH grants GM097468 and NS085509 to Z. Zhuang.

References

  1. 1.
    Nijman SM, Luna-Vargas MP, Velds A et al (2005) A genomic and functional inventory of deubiquitinating enzymes. Cell 123:773–786. doi: 10.1016/j.cell.2005.11.007 CrossRefPubMedGoogle Scholar
  2. 2.
    Borodovsky A, Kessler BM, Casagrande R et al (2001) A novel active site-directed probe specific for deubiquitylating enzymes reveals proteasome association of USP14. EMBO J 20:5187–5196. doi: 10.1093/emboj/20.18.5187 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Borodovsky A, Ovaa H, Kolli N et al (2002) Chemistry-based functional proteomics reveals novel members of the deubiquitinating enzyme family. Chem Biol 9:1149–1159. doi: 10.1016/S1074-5521(02)00248-X CrossRefPubMedGoogle Scholar
  4. 4.
    de Jong A, Merkx R, Berlin I et al (2012) Ubiquitin-based probes prepared by total synthesis to profile the activity of deubiquitinating enzymes. ChemBioChem 13:2251–2258. doi: 10.1002/cbic.201200497 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ekkebus R, van Kasteren SI, Kulathu Y et al (2013) On terminal alkynes that can react with active-site cysteine nucleophiles in proteases. J Am Chem Soc 135:2867–2870. doi: 10.1021/ja309802n CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Hemelaar J, Borodovsky A, Kessler BM et al (2004) Specific and covalent targeting of conjugating and deconjugating enzymes of ubiquitin-like proteins. Mol Cell Biol 24:84–95. doi: 10.1128/MCB.24.1.84-95.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Love KR, Pandya RK, Spooner E, Ploegh HL (2009) Ubiquitin C-terminal electrophiles are activity-based probes for identification and mechanistic study of ubiquitin conjugating machinery. ACS Chem Biol 4:275–287. doi: 10.1021/cb9000348 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    McGouran JF, Kramer HB, Mackeen MM et al (2012) Fluorescence-based active site probes for profiling deubiquitinating enzymes. Org Biomol Chem 10:3379–3383. doi: 10.1039/c2ob25258a CrossRefPubMedGoogle Scholar
  9. 9.
    Ovaa H, Kessler BM, Rolen U et al (2004) Activity-based ubiquitin-specific protease (USP) profiling of virus-infected and malignant human cells. Proc Natl Acad Sci U S A 101:2253–2258. doi: 10.1073/pnas.0308411100 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Haj-Yahya N, Hemantha HP, Meledin R et al (2014) Dehydroalanine-based diubiquitin activity probes. Org Lett 16:540–543. doi: 10.1021/ol403416w CrossRefPubMedGoogle Scholar
  11. 11.
    Iphofer A, Kummer A, Nimtz M et al (2012) Profiling ubiquitin linkage specificities of deubiquitinating enzymes with branched ubiquitin isopeptide probes. ChemBioChem 13:1416–1420. doi: 10.1002/cbic.201200261 CrossRefPubMedGoogle Scholar
  12. 12.
    Li G, Liang Q, Gong P et al (2014) Activity-based diubiquitin probes for elucidating the linkage specificity of deubiquitinating enzymes. Chem Commun 50:216–218. doi: 10.1039/c3cc47382a CrossRefGoogle Scholar
  13. 13.
    McGouran JF, Gaertner SR, Altun M et al (2013) Deubiquitinating enzyme specificity for ubiquitin chain topology profiled by di-ubiquitin activity probes. Chem Biol 20:1447–1455. doi: 10.1016/j.chembiol.2013.10.012 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Mulder MP, El Oualid F, ter Beek J, Ovaa H (2014) A native chemical ligation handle that enables the synthesis of advanced activity-based probes: diubiquitin as a case study. ChemBioChem 15:946–949. doi: 10.1002/cbic.201402012 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Little TL, Webber SE (1994) A simple and practical synthesis of 2-aminoimidazoles. J Org Chem 59:7299–7305. doi: 10.1021/jo00103a021 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Chemistry and BiochemistryUniversity of DelawareNewarkUSA

Personalised recommendations