Skip to main content

Computational Methods and Correlation of Exon-skipping Events with Splicing, Transcription, and Epigenetic Factors

  • Protocol
  • First Online:
Book cover Cancer Gene Networks

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1513))

Abstract

Alternative splicing is widely recognized for playing roles in regulating genes and creating gene diversity. Consequently the identification and quantification of differentially spliced transcripts are pivotal for transcriptome analysis. However, how these diversified isoforms are spliced during genomic transcription and protein expression and what biological factors might influence the regulation of this are still required for further exploration. The advances in next-generation sequencing of messenger RNA (RNA-seq) have enabled us to survey gene expression and splicing more accurately. We have introduced a novel computational method, graph-based exon-skipping scanner (GESS), for de novo detection of skipping event sites from raw RNA-seq reads without prior knowledge of gene annotations, as well as for determining the dominant isoform generated from such sites. We have applied our method to publicly available RNA-seq data in GM12878 and K562 cells from the ENCODE consortium, and integrated other sequencing-based genomic data to investigate the impact of splicing activities, transcription factors (TFs) and epigenetic histone modifications on splicing outcomes. In a separate study, we also apply this algorithm in prostate cancer in The Cancer Genomics Atlas (TCGA) for de novo skipping event discovery to the understanding of abnormal splicing in each patient and to identify potential markers for prediction and progression of diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Florea L, Song L, Salberg SL et al (2013) Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues [v2; ref status: indexed, http://f1000r.es/2dl]. F1000Research 2:188

    PubMed  PubMed Central  Google Scholar 

  2. Hu Y, Huang Y, Du Y et al (2013) DiffSplice: the genome-wide detection of differential splicing events with RNA-seq. Nucleic Acids Res 41:e39. doi:10.1093/nar/gks1026

    Article  CAS  PubMed  Google Scholar 

  3. Wang W, Qin Z, Feng Z et al (2013) Identifying differentially spliced genes from two groups of RNA-seq samples. Gene 518:164–170

    Article  CAS  PubMed  Google Scholar 

  4. Laurent L, Wong E, Li G et al (2010) Dynamic changes in the human methylome during differentiation. Genome Res 20:320–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ye Z, Chen Z, Lan X et al (2014) Computational analysis reveals a correlation of exon-skipping events with splicing, transcription and epigenetic factors. Nucleic Acids Res 42:2856–2869

    Article  CAS  PubMed  Google Scholar 

  6. Pushkarev D, Neff NF, Quake SR (2009) Single-molecule sequencing of an individual human genome. Nat Biotechnol 27:847–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Foissac S, Sammeth M (2007) ASTALAVISTA: dynamic and flexible analysis of alternative splicing events in custom gene datasets. Nucleic Acids Res 35(Web Server issue):W297–W299

    Article  PubMed  PubMed Central  Google Scholar 

  8. Trapnell C, Pachter L, Salberg SL (2009) TopHat: discovering splice junctions with RNA-Seq. Bioinformatics 25:1105–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Katz Y, Wang ET, Airoldi EM, Burge CB (2010) Analysis and design of RNA sequencing experiments for identifying isoform regulation. Nat Methods 7:1009–1015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Trapnell C, Williams BA, Pertea G et al (2010) Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol 28:511–515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. The ENCODE Project Consortium (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489:57–74

    Article  PubMed Central  Google Scholar 

  12. Catalona WJ, Partin AW, Finlay JA et al (1999) Use of percentage of free prostate-specific antigen to identify men at high risk of prostate cancer when psa levels are 2.51 to 4 ng/mL and digital rectal examination is not suspicious for prostate cancer: an alternative model. Urology 54:220–224

    Article  CAS  PubMed  Google Scholar 

  13. Jemal A, Bray F, Center MM et al (2011) Global cancer statistics. CA Cancer J Clin 61:69–90

    Article  PubMed  Google Scholar 

  14. Shen MM, Abate-Shen C (2010) Molecular genetics of prostate cancer: new prospects for old challenges. Genes Dev 24:1967–2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Clarke RA, Schirra HJ, Catto JW et al (2010) Markers for detection of prostate cancer. Cancers (Basel) 2:1125–1154

    Article  CAS  Google Scholar 

  16. Berger MF, Lawrence MS, Demichelis F et al (2011) The genomic complexity of primary human prostate cancer. Nature 470:214–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kornblihtt AR, de la Mata M, Fededa JP et al (2004) Multiple links between transcription and splicing. RNA 10:1489–1498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Baca SC, Prandi D, Lawrence MS et al (2013) Punctuated evolution of prostate cancer genomes. Cell 153:666–677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Goodrich JA, Tjian R (2010) Unexpected roles for core promoter recognition factors in cell-type-specific transcription and gene regulation. Nat Rev Genet 11:549–558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barski A, Cuddapah S, Cui K et al (2007) High-resolution profiling of histone methylations in the human genome. Cell 129:823–837

    Article  CAS  PubMed  Google Scholar 

  21. Wang ET, Sandberg R, Luo S et al (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor X. Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wang, J., Ye, Z., Huang, T.H., Shi, H., Jin, V.X. (2017). Computational Methods and Correlation of Exon-skipping Events with Splicing, Transcription, and Epigenetic Factors. In: Kasid, U., Clarke, R. (eds) Cancer Gene Networks. Methods in Molecular Biology, vol 1513. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6539-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6539-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6537-3

  • Online ISBN: 978-1-4939-6539-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics