Skip to main content

How to Distinguish Between the Activity of HDAC1-3 and HDAC6 with Western Blot

  • Protocol
  • First Online:
Book cover HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1510))

Abstract

Histone deacetylases (HDACs) catalyze the deacetylation of lysine residues in their target proteins. This biochemical modification can have profound effects on the functions of these proteins and a dysregulation of HDAC activity contributes to severe diseases, including neoplastic transformation. In the following chapter, we present a strategy that allows to distinguish between the inhibition of the class I HDACs HDAC1, 2, and 3 and of the class IIb HDAC HDAC6. This method is based on Western blot and relies on the detection of hyperacetylated substrates of class I or class IIb HDACs in lysates from cells that were treated with histone deacetylase inhibitors (HDACi).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spange S, Wagner T, Heinzel T, Krämer OH (2009) Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol 41:185–198

    Article  CAS  PubMed  Google Scholar 

  2. Villagra A, Sotomayor EM, Seto E (2009) Histone deacetylases and the immunological network: implications in cancer and inflammation. Oncogene 29:157–173

    Article  PubMed  Google Scholar 

  3. Buchwald M, Krämer OH, Heinzel T (2009) HDACi—targets beyond chromatin. Cancer Lett 280:160–167

    Article  CAS  PubMed  Google Scholar 

  4. Krämer OH (2009) HDAC2: a critical factor in health and disease. Trends Pharmacol Sci 30:647–655

    Article  PubMed  Google Scholar 

  5. Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN (2004) Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 59:177–189

    Article  CAS  PubMed  Google Scholar 

  6. Wilson AJ, Byun DS, Popova N, Murray LB, L’Italien K, Sowa Y, Arango D, Velcich A, Augenlicht LH, Mariadason JM (2006) Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 281:13548–13558

    Article  CAS  PubMed  Google Scholar 

  7. Lee SH, Yoo C, Im S, Jung JH, Choi HJ, Yoo J (2014) Expression of histone deacetylases in diffuse large B-cell lymphoma and its clinical significance. Int J Med Sci 11:994–1000

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang Z, Yamashita H, Toyama T, Sugiura H, Ando Y, Mita K, Hamaguchi M, Hara Y, Kobayashi S, Iwase H (2005) Quantitation of HDAC1 mRNA expression in invasive carcinoma of the breast. Breast Cancer Res Treat 94:11–16

    Article  CAS  PubMed  Google Scholar 

  9. Zhu P, Martin E, Mengwasser J, Schlag P, Janssen KP, Göttlicher M (2004) Induction of HDAC2 expression upon loss of APC in colorectal tumorigenesis. Cancer Cell 5:455–463

    Article  CAS  PubMed  Google Scholar 

  10. Zhang Z, Yamashita H, Toyama T, Sugiura H, Omoto Y, Ando Y, Mita K, Hamaguchi M, Hayashi S, Iwase H (2004) HDAC6 expression is correlated with better survival in breast cancer. Clin Cancer Res 10:6962–6968

    Article  CAS  PubMed  Google Scholar 

  11. Falkenberg KJ, Johnstone RW (2014) Histone deacetylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13:673–691

    Article  CAS  PubMed  Google Scholar 

  12. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5:769–784

    Article  CAS  PubMed  Google Scholar 

  13. Parmigiani RB, Xu WS, Venta-Perez G, Erdjument-Bromage H, Yaneva M, Tempst P, Marks PA (2008) HDAC6 is a specific deacetylase of peroxiredoxins and is involved in redox regulation. Proc Natl Acad Sci U S A 105:9633–9638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Krämer OH, Mahboobi S, Sellmer A (2014) Drugging the HDAC6-HSP90 interplay in malignant cells. Trends Pharmacol Sci 35:501–509

    Article  PubMed  Google Scholar 

  15. Bradner JE, Mak R, Tanguturi SK, Mazitschek R, Haggarty SJ, Ross K, Chang CY, Bosco J, West N, Morse E, Lin K, Shen JP, Kwiatkowski NP, Gheldof N, Dekker J, DeAngelo DJ, Carr SA, Schreiber SL, Golub TR, Ebert BL (2010) Chemical genetic strategy identifies histone deacetylase 1 (HDAC1) and HDAC2 as therapeutic targets in sickle cell disease. Proc Natl Acad Sci U S A 107:12617–12622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG, Heinzel T (2001) Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J 20:6969–6978

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bhalla KN (2005) Epigenetic and chromatin modifiers as targeted therapy of hematologic malignancies. J Clin Oncol 23:3971–3993

    Article  CAS  PubMed  Google Scholar 

  18. Hu E, Dul E, Sung CM, Chen Z, Kirkpatrick R, Zhang GF, Johanson K, Liu R, Lago A, Hofmann G, Macarron R, de los Frailes M, Perez P, Krawiec J, Winkler J, Jaye M (2003) Identification of novel isoform-selective inhibitors within class I histone deacetylases. J Pharmacol Exp Ther 307:720–728

    Article  CAS  PubMed  Google Scholar 

  19. Maiso P, Carvajal-Vergara X, Ocio EM, Lopez-Perez R, Mateo G, Gutierrez N, Atadja P, Pandiella A, San Miguel JF (2006) The histone deacetylase inhibitor LBH589 is a potent antimyeloma agent that overcomes drug resistance. Cancer Res 66:5781–5789

    Article  CAS  PubMed  Google Scholar 

  20. Brandl A, Heinzel T, Krämer OH (2009) Histone deacetylases: salesmen and customers in the post-translational modification market. Biol Cell 101:193–205

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by grants to OHK from the Wilhelm Sander foundation (#2010.078) and the Deutsche Forschungsgemeinschaft (#KR22 91/4–1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver H. Krämer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Beyer, M., Kiweler, N., Mahboobi, S., Krämer, O.H. (2017). How to Distinguish Between the Activity of HDAC1-3 and HDAC6 with Western Blot. In: Krämer, O. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 1510. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6527-4_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6527-4_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6525-0

  • Online ISBN: 978-1-4939-6527-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics