Skip to main content

Assessment of HDACi-Induced Protein Cleavage by Caspases

  • Protocol
  • First Online:
Book cover HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1510))

Abstract

Aberrant histone deacetylase (HDAC) activity often correlates with neoplastic transformation and inhibition of HDACs by small molecules has emerged as a promising strategy to treat hematological malignancies in particular. Treatment with HDAC inhibitors (HDACis) often prompts tumor cells to undergo apoptosis, thereby causing a caspase-dependent cleavage of target proteins. An unexpectedly large number of proteins are in vivo caspase substrates and defining caspase-mediated substrate specificity is a major challenge. In this chapter we demonstrate that the hematopoietic transcription factor PU.1 becomes cleaved after treatment of acute myeloid leukemia (AML) cells with the HDACis LBH589 (panobinostat) or MS-275 (entinostat). To define caspase specificity for PU.1, an in vitro caspase assay including caspases 1–10 with in vitro-translated PU.1 is described in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bolden JE, Peart MJ, Johnstone RW (2006) Anticancer activities of histone deacytylase inhibitors. Nat Rev Drug Discov 5(9):769–784

    Article  CAS  PubMed  Google Scholar 

  2. New M, Olzscha H, La Thangue NB (2012) HDAC inhibitor-based therapies: can we interpret the code? Mol Oncol 6(6):637–656

    Article  CAS  PubMed  Google Scholar 

  3. Buchwald M, Krämer OH, Heinzel T (2009) HDACi-targets beyond chromatin. Cancer Lett 280(2):160–167

    Article  CAS  PubMed  Google Scholar 

  4. Falkenberg KJ, Johnstone RW (2014) Histone deacytylases and their inhibitors in cancer, neurological diseases and immune disorders. Nat Rev Drug Discov 13(9):673–691

    Article  CAS  PubMed  Google Scholar 

  5. Witt O, Deubzer HE, Milde T et al (2009) HDAC family: what are the relevant targets? Cancer Lett 277(1):8–21

    Article  CAS  PubMed  Google Scholar 

  6. West AC, Johnstone RW (2014) New and emerging HDAC inhibitors for cancer treatment. J Clin Invest 124(1):30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crawford ED, Wells JA (2011) Caspase substrates and cellular remodeling. Annu Rev Biochem 80:1055–1087

    Article  CAS  PubMed  Google Scholar 

  8. Thornberry NA, Rano TA, Peterson EP et al (1997) A combinatorial approach defines specifities of members of the caspase family and granzyme B. Functional relationships established for key mediators of apoptosis. J Biol Chem 272(29):17907–17911

    Article  CAS  PubMed  Google Scholar 

  9. Poreba M, Strozyk A, Salvesen GS et al (2013) Caspase substrates and inhibitors. Cold Spring Harb Perspect Biol 5:a008680

    Article  PubMed  PubMed Central  Google Scholar 

  10. Hess-Stumpp H, Bracker TU, Henderson D et al (2007) MS-275, a potent orally available inhibitor of histone deacytylases-the development of an anticancer agent. Int J Biochem Cell Biol 39(7-8):1388–1405

    Article  CAS  PubMed  Google Scholar 

  11. DeAngelo DJ, Spencer A, Bhalla KN et al (2013) Phase Ia/II, two-arm, open-label, dose-escalation study of oral panobinostat administered via two dosing schedules in patients with advanced hematologic malignancies. Leukemia 27(8):1628–1636

    Article  CAS  PubMed  Google Scholar 

  12. Klemsz MJ, McKercher SR, Celada A et al (1990) The macrophage and B cell-specific transcription factor PU.1 is related to the ets oncogene. Cell 61(1):113–124

    Article  CAS  PubMed  Google Scholar 

  13. van Riel B, Rosenbauer F (2014) Epigenetic control of hematopoiesis: the PU.1 chromatin connection. Biol Chem 395(11):1265–1274

    PubMed  Google Scholar 

  14. Rosenbauer F, Wagner K, Kutok JL et al (2004) Acute myeloid leukemia induced by graded reduction of a lineage-specific transcription factor, PU.1. Nat Genet 36(6):624–630

    Article  CAS  PubMed  Google Scholar 

  15. Metcalf D, Dakic A, Mifsud S et al (2006) Inactivation of PU.1 in adult mice leads to the development of myeloid leukemia. Proc Natl Acad Sci U S A 103(5):1486–1491

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhao M, Duan XF, When DH et al (2009) PU.1, a novel caspase-3 substrate, partially contributes to chemotherapeutic agents-induced apoptosis in leukemic cells. Biochem Biophys Res Commun 382(3):508–513

    Article  CAS  PubMed  Google Scholar 

  17. Herzog N, Hartkamp JD, Verheugd P et al (2013) Caspase-dependent cleavage of the mono-ADP-ribosyltransferase ARTD10 interferes with its pro-apoptotic function. FEBS J 280(5):1330–1343

    Article  CAS  PubMed  Google Scholar 

  18. Treude F, Kappes F, Fahrenkamp D et al (2014) Caspase-8-mediated PAR-4 cleavage is required for TNFa-induced apoptosis. Oncotarget 5(10):2988–2998

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hartkamp J, Carpenter B, Roberts SG (2010) The Wilms’ tumor suppressor protein WT1 is processed by the serine protease HtrA2/Omi. Mol Cell 37(2):159–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the START program of the Medical School of the Rheinische-Westfälische Technische Hochschule (RWTH) Aachen University to J. Hartkamp.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Hartkamp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Treude, F., Gladbach, T., Plaster, J., Hartkamp, J. (2017). Assessment of HDACi-Induced Protein Cleavage by Caspases. In: Krämer, O. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 1510. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6527-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6527-4_2

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6525-0

  • Online ISBN: 978-1-4939-6527-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics