Skip to main content

Engineering of Conditional Class I Hdac Knockout Mice and Generation of a Time-Spatial Knockout by a Dual Recombination System

  • Protocol
  • First Online:
HDAC/HAT Function Assessment and Inhibitor Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1510))

Abstract

The protein sequences of class I HDACs in mice and humans are 96–99 % identical. These highly conserved proteins have crucial roles in biological processes, such as proliferation and development, which is reflected in the lethality that occurs in conventional whole body knockout mice. Therefore, conditional knockouts are inevitable to investigate the functions of class I HDACs in mice. Here, we describe the generation of conditional class I Hdac knockout mice, using Hdac1 as an example. We explain a relatively quick procedure to generate the necessary target vectors by recombination-mediated genetic engineering and gateway techniques. Furthermore, we show how to culture, target, and screen for positively recombined ES cells. Additionally, we present a dual recombination system, which allows the deletion of class I Hdacs at any time by a tamoxifen inducible Cre.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sternberg N, Hamilton D (1981) Bacteriophage P1 site-specific recombination. I. Recombination between loxP sites. J Mol Biol 150:467–486

    Article  CAS  PubMed  Google Scholar 

  2. Mansour SL, Thomas KR, Capecchi MR (1988) Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336:348–352

    Article  CAS  PubMed  Google Scholar 

  3. Montgomery RL et al (2007) Histone deacetylases 1 and 2 redundantly regulate cardiac morphogenesis, growth, and contractility. Genes Dev 21:1790–1802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lagger G et al (2002) Essential function of histone deacetylase 1 in proliferation control and CDK inhibitor repression. EMBO J 21:2672–2681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Montgomery RL et al (2008) Maintenance of cardiac energy metabolism by histone deacetylase 3 in mice. J Clin Invest 118:3588–3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bhaskara S et al (2008) Deletion of histone deacetylase 3 reveals critical roles in S phase progression and DNA damage control. Mol Cell 30:61–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Trivedi CM et al (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3 beta activity. Nat Med 13:324–331

    Article  CAS  PubMed  Google Scholar 

  8. Haberland M, Mokalled MH, Montgomery RL, Olson EN (2009) Epigenetic control of skull morphogenesis by histone deacetylase 8. Genes Dev 23:1625–1630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Orban PC, Chui D, Marth JD (1992) Tissue- and site-specific DNA recombination in transgenic mice. Proc Natl Acad Sci U S A 89:6861–6865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sauer B (1987) Functional expression of the cre-lox site-specific recombination system in the yeast Saccharomyces cerevisiae. Mol Cell Biol 7:2087–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yau YY, Stewart CN Jr (2013) Less is more: strategies to remove marker genes from transgenic plants. BMC Biotechnol 13:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tian Y, James S, Zuo J, Fritzsch B, Beisel KW (2006) Conditional and inducible gene recombineering in the mouse inner ear. Brain Res 1091:243–254

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Schlake T, Bode J (1994) Use of mutated FLP recognition target (FRT) sites for the exchange of expression cassettes at defined chromosomal loci. Biochemistry 33:12746–12751

    Article  CAS  PubMed  Google Scholar 

  14. Schonhuber N et al (2014) A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat Med 20:1340–1347

    Article  PubMed  PubMed Central  Google Scholar 

  15. Diersch S et al (2015) Kras(G12D) induces EGFR-MYC cross signaling in murine primary pancreatic ductal epithelial cells. Oncogene 35:3880–6.

    Google Scholar 

  16. Feil R et al (1996) Ligand-activated site-specific recombination in mice. Proc Natl Acad Sci U S A 93:10887–10890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kersey PJ et al (2016) Ensembl Genomes 2016: more genomes, more complexity. Nucleic Acids Res 44:D574–80

    Article  PubMed  Google Scholar 

  18. Yates A et al (2016) Ensembl 2016. Nucleic Acids Res. 2016 44:D710–6

    Google Scholar 

  19. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97:6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chaiyachati BH et al (2013) LoxP-FRT Trap (LOFT): a simple and flexible system for conventional and reversible gene targeting. BMC Biol 10:96

    Article  Google Scholar 

  21. Chung CT, Niemela SL, Miller RH (1989) One-step preparation of competent Escherichia coli: transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86:2172–2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kobayashi N et al (2005) Gene delivery to embryonic stem cells. Birth Defects Res C Embryo Today 75:10–18

    Article  CAS  PubMed  Google Scholar 

  23. Neumann E, Schaefer-Ridder M, Wang Y, Hofschneider PH (1982) Gene transfer into mouse lyoma cells by electroporation in high electric fields. EMBO J 1:841–845

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Lee KH (2014) Generating chimeric mice from embryonic stem cells via vial coculturing or hypertonic microinjection. Methods Mol Biol 1194:77–111

    Article  PubMed  Google Scholar 

  25. Wirth M et al (2014) MYC and EGR1 synergize to trigger tumor cell death by controlling NOXA and BIM transcription upon treatment with the proteasome inhibitor bortezomib. Nucleic Acids Res 42:10433–10447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Huijbers IJ et al (2015) Using the GEMM-ESC strategy to study gene function in mouse models. Nat Protoc 10:1755–1785

    Article  CAS  PubMed  Google Scholar 

  27. Huijbers IJ et al (2014) Rapid target gene validation in complex cancer mouse models using re-derived embryonic stem cells. EMBO Mol Med 6:212–225

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Premsrirut PK et al (2011) A rapid and scalable system for studying gene function in mice using conditional RNA interference. Cell 145:145–158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Saborowski M et al (2014) A modular and flexible ESC-based mouse model of pancreatic cancer. Genes Dev 28:85–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Loonstra A et al (2001) Growth inhibition and DNA damage induced by Cre recombinase in mammalian cells. Proc Natl Acad Sci U S A 98:9209–9214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pfeifer A, Brandon EP, Kootstra N, Gage FH, Verma IM (2001) Delivery of the Cre recombinase by a self-deleting lentiviral vector: efficient gene targeting in vivo. Proc Natl Acad Sci U S A 98:11450–11455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hameyer D et al (2007) Toxicity of ligand-dependent Cre recombinases and generation of a conditional Cre deleter mouse allowing mosaic recombination in peripheral tissues. Physiol Genomics 31:32–41

    Article  CAS  PubMed  Google Scholar 

  33. Buchholz F, Ringrose L, Angrand PO, Rossi F, Stewart AF (1996) Different thermostabilities of FLP and Cre recombinases: implications for applied site-specific recombination. Nucleic Acids Res 24:4256–4262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sauer B, McDermott J (2004) DNA recombination with a heterospecific Cre homolog identified from comparison of the pac-c1 regions of P1-related phages. Nucleic Acids Res 32:6086–6095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Anastassiadis K et al (2009) Dre recombinase, like Cre, is a highly efficient site-specific recombinase in E. coli, mammalian cells and mice. Dis Model Mech 2:508–515

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

This work was supported by Else Kröner Fresenius Stiftung (2016_A43) to MW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Wirth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bayer, S., Wirth, M. (2017). Engineering of Conditional Class I Hdac Knockout Mice and Generation of a Time-Spatial Knockout by a Dual Recombination System. In: Krämer, O. (eds) HDAC/HAT Function Assessment and Inhibitor Development. Methods in Molecular Biology, vol 1510. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6527-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6527-4_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6525-0

  • Online ISBN: 978-1-4939-6527-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics