Skip to main content

Cell-Penetrating Peptide-Mediated Delivery of Cas9 Protein and Guide RNA for Genome Editing

  • Protocol
  • First Online:
Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1507))

Abstract

The clustered, regularly interspaced, short palindromic repeat (CRISPR)-associated (Cas) system represents an efficient tool for genome editing. It consists of two components: the Cas9 protein and a guide RNA. To date, delivery of these two components has been achieved using either plasmid or viral vectors or direct delivery of protein and RNA. Plasmid- and virus-free direct delivery of Cas9 protein and guide RNA has several advantages over the conventional plasmid-mediated approach. Direct delivery results in shorter exposure time at the cellular level, which in turn leads to lower toxicity and fewer off-target mutations with reduced host immune responses, whereas plasmid- or viral vector-mediated delivery can result in uncontrolled integration of the vector sequence into the host genome and unwanted immune responses. Cell-penetrating peptide (CPP), a peptide that has an intrinsic ability to translocate across cell membranes, has been adopted as a means of achieving efficient Cas9 protein and guide RNA delivery. We developed a method for treating human cell lines with CPP-conjugated recombinant Cas9 protein and CPP-complexed guide RNAs that leads to endogenous gene disruption. Here we describe a protocol for preparing an efficient CPP-conjugated recombinant Cas9 protein and CPP-complexed guide RNAs, as well as treatment methods to achieve safe genome editing in human cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science 327(5962):167–170. doi:10.1126/science.1179555

    Article  CAS  PubMed  Google Scholar 

  2. Wiedenheft B, Sternberg SH, Doudna JA (2012) RNA-guided genetic silencing systems in bacteria and archaea. Nature 482(7385):331–338. doi:10.1038/nature10886

    Article  CAS  PubMed  Google Scholar 

  3. Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA (2013) RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31(3):233–239. doi:10.1038/nbt.2508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hwang WY, Fu Y, Reyon D, Maeder ML, Tsai SQ, Sander JD, Peterson RT, Yeh JR, Joung JK (2013) Efficient genome editing in zebrafish using a CRISPR-Cas system. Nat Biotechnol 31(3):227–229. doi:10.1038/nbt.2501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cho SW, Lee J, Carroll D, Kim JS (2013) Heritable gene knockout in Caenorhabditis elegans by direct injection of Cas9-sgRNA ribonucleoproteins. Genetics 195(3):1177–1180. doi:10.1534/genetics.113.155853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dickinson DJ, Ward JD, Reiner DJ, Goldstein B (2013) Engineering the Caenorhabditis elegans genome using Cas9-triggered homologous recombination. Nat Methods 10(10):1028–1034. doi:10.1038/nmeth.2641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Friedland AE, Tzur YB, Esvelt KM, Colaiacovo MP, Church GM, Calarco JA (2013) Heritable genome editing in C. elegans via a CRISPR-Cas9 system. Nat Methods 10(8):741–743. doi:10.1038/nmeth.2532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O’Connor-Giles KM (2013) Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 194(4):1029–1035. doi:10.1534/genetics.113.152710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li D, Qiu Z, Shao Y, Chen Y, Guan Y, Liu M, Li Y, Gao N, Wang L, Lu X, Zhao Y (2013) Heritable gene targeting in the mouse and rat using a CRISPR-Cas system. Nat Biotechnol 31(8):681–683. doi:10.1038/nbt.2661

    Article  CAS  PubMed  Google Scholar 

  10. Li W, Teng F, Li T, Zhou Q (2013) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol 31(8):684–686. doi:10.1038/nbt.2652

    Article  CAS  PubMed  Google Scholar 

  11. Wang H, Yang H, Shivalila CS, Dawlaty MM, Cheng AW, Zhang F, Jaenisch R (2013) One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell 153(4):910–918. doi:10.1016/j.cell.2013.04.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang H, Wang H, Shivalila CS, Cheng AW, Shi L, Jaenisch R (2013) One-step generation of mice carrying reporter and conditional alleles by CRISPR/Cas-mediated genome engineering. Cell 154(6):1370–1379. doi:10.1016/j.cell.2013.08.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31(8):688–691. doi:10.1038/nbt.2654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nekrasov V, Staskawicz B, Weigel D, Jones JD, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31(8):691–693. doi:10.1038/nbt.2655

    Article  CAS  PubMed  Google Scholar 

  15. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Qiu JL, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31(8):686–688. doi:10.1038/nbt.2650

    Article  CAS  PubMed  Google Scholar 

  16. Cho SW, Kim S, Kim JM, Kim JS (2013) Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol 31(3):230–232. doi:10.1038/nbt.2507

    Article  CAS  PubMed  Google Scholar 

  17. Cong L, Ran FA, Cox D, Lin S, Barretto R, Habib N, Hsu PD, Wu X, Jiang W, Marraffini LA, Zhang F (2013) Multiplex genome engineering using CRISPR/Cas systems. Science 339(6121):819–823. doi:10.1126/science.1231143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J (2013) RNA-programmed genome editing in human cells. Elife 2, e00471. doi:10.7554/eLife.00471

    Article  PubMed  PubMed Central  Google Scholar 

  19. Mali P, Yang L, Esvelt KM, Aach J, Guell M, DiCarlo JE, Norville JE, Church GM (2013) RNA-guided human genome engineering via Cas9. Science 339(6121):823–826. doi:10.1126/science.1232033

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Maggio I, Holkers M, Liu J, Janssen JM, Chen X, Goncalves MA (2014) Adenoviral vector delivery of RNA-guided CRISPR/Cas9 nuclease complexes induces targeted mutagenesis in a diverse array of human cells. Sci Rep 4:5105. doi:10.1038/srep05105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Senis E, Fatouros C, Grosse S, Wiedtke E, Niopek D, Mueller AK, Borner K, Grimm D (2014) CRISPR/Cas9-mediated genome engineering: an adeno-associated viral (AAV) vector toolbox. Biotechnol J 9(11):1402–1412. doi:10.1002/biot.201400046

    Article  CAS  PubMed  Google Scholar 

  22. Hemmi H, Takeuchi O, Kawai T, Kaisho T, Sato S, Sanjo H, Matsumoto M, Hoshino K, Wagner H, Takeda K, Akira S (2000) A Toll-like receptor recognizes bacterial DNA. Nature 408(6813):740–745. doi:10.1038/35047123

    Article  CAS  PubMed  Google Scholar 

  23. Wagner H (2001) Toll meets bacterial CpG-DNA. Immunity 14(5):499–502

    Article  CAS  PubMed  Google Scholar 

  24. Gaj T, Guo J, Kato Y, Sirk SJ, Barbas CF 3rd (2012) Targeted gene knockout by direct delivery of zinc-finger nuclease proteins. Nat Methods 9(8):805–807. doi:10.1038/nmeth.2030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu J, Gaj T, Patterson JT, Sirk SJ, Barbas Iii CF (2014) Cell-penetrating peptide-mediated delivery of TALEN proteins via bioconjugation for genome engineering. PLoS One 9(1), e85755. doi:10.1371/journal.pone.0085755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ramakrishna S, Kwaku Dad AB, Beloor J, Gopalappa R, Lee SK, Kim H (2014) Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24(6):1020–1027. doi:10.1101/gr.171264.113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ (2010) A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 649:247–256. doi:10.1007/978-1-60761-753-2_15

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (HI14C2019 (Medistar program)).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Suresh Ramakrishna or Hyongbum Kim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Suresh, B., Ramakrishna, S., Kim, H. (2017). Cell-Penetrating Peptide-Mediated Delivery of Cas9 Protein and Guide RNA for Genome Editing. In: Wajapeyee, N., Gupta, R. (eds) Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation. Methods in Molecular Biology, vol 1507. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6518-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6518-2_7

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6516-8

  • Online ISBN: 978-1-4939-6518-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics