Skip to main content

Efficient Preparation of High-Complexity ChIP-Seq Profiles from Early Xenopus Embryos

  • Protocol
  • First Online:
Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1507))

Abstract

Chromatin immunoprecipitation followed by next-generation sequencing (ChIP-seq) has become a powerful tool to acquire a precise and genome-wide snapshot of many chromatin features in vivo. These chromatin profiles are obtained by immunoprecipitation of cross-linked chromatin fragments to enrich the feature of interest. Sequencing and aligning the underlying DNA sequences to the genome make it possible to virtually reconstruct the global distribution of most chromatin features. We present here recent improvements to the ChIP-seq protocol by means of Xenopus embryos to prepare high-complexity DNA libraries from small amounts of biological material. This approach allows researchers to explore the landscape of chromatin regulators and states in early vertebrate embryos or in any biological entity with small numbers of cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilmour DS, Lis JT (1984) Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. Proc Natl Acad Sci U S A 81(14):4275–4279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gilmour DS, Lis JT (1985) In vivo interactions of RNA polymerase II with genes of Drosophila melanogaster. Mol Cell Biol 5(8):2009–2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Ren B, Robert F, Wyrick JJ, Aparicio O, Jennings EG, Simon I, Zeitlinger J, Schreiber J, Hannett N, Kanin E, Volkert TL, Wilson CJ, Bell SP, Young RA (2000) Genome-wide location and function of DNA binding proteins. Science 290(5500):2306–2309. doi:10.1126/science.290.5500.2306

    Article  CAS  PubMed  Google Scholar 

  4. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, Jaenisch R, Wagschal A, Feil R, Schreiber SL, Lander ES (2006) A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125(2):315–326. doi:10.1016/j.cell.2006.02.041, S0092-8674(06)00380-1 [pii]

    Article  CAS  PubMed  Google Scholar 

  5. Johnson DS, Mortazavi A, Myers RM, Wold B (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502. doi:10.1126/science.1141319, 1141319 [pii]

    Article  CAS  PubMed  Google Scholar 

  6. Gentsch GE, Smith JC (2014) Investigating physical chromatin associations across the Xenopus genome by chromatin immunoprecipitation. Cold Spring Harb Protoc 2014 (5). doi:10.1101/pdb.prot080614, 2014/5/pdb.prot080614 [pii]

  7. Gentsch GE, Patrushev I, Smith JC (2015) Genome-wide snapshot of chromatin regulators and states in Xenopus embryos by ChIP-Seq. J Vis Exp (96). doi:10.3791/52535

    Google Scholar 

  8. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) The Sequence Alignment/Map format and SAMtools. Bioinformatics 25(16):2078–2079. doi:10.1093/bioinformatics/btp352, btp352 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25. doi:10.1186/gb-2009-10-3-r25, gb-2009-10-3-r25 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P, Cheng JX, Murre C, Singh H, Glass CK (2010) Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell 38(4):576–589. doi:10.1016/j.molcel.2010.05.004, S1097-2765(10)00366-7 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, Mesirov JP (2011) Integrative genomics viewer. Nat Biotechnol 29(1):24–26. doi:10.1038/nbt.1754, nbt.1754 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14(2):178–192. doi:10.1093/bib/bbs017, bbs017 [pii]

    Article  CAS  PubMed  Google Scholar 

  13. Sive H, Grainger R, Harland R (2000) Early development of Xenopus laevis: a laboratory manual. Cold Spring Harbor Laboratory Press, New York

    Google Scholar 

  14. Metz B, Kersten GF, Hoogerhout P, Brugghe HF, Timmermans HA, de Jong A, Meiring H, ten Hove J, Hennink WE, Crommelin DJ, Jiskoot W (2004) Identification of formaldehyde-induced modifications in proteins: reactions with model peptides. J Biol Chem 279(8):6235–6243. doi:10.1074/jbc.M310752200, M310752200 [pii]

    Article  CAS  PubMed  Google Scholar 

  15. Landt SG, Marinov GK, Kundaje A, Kheradpour P, Pauli F, Batzoglou S, Bernstein BE, Bickel P, Brown JB, Cayting P, Chen Y, DeSalvo G, Epstein C, Fisher-Aylor KI, Euskirchen G, Gerstein M, Gertz J, Hartemink AJ, Hoffman MM, Iyer VR, Jung YL, Karmakar S, Kellis M, Kharchenko PV, Li Q, Liu T, Liu XS, Ma L, Milosavljevic A, Myers RM, Park PJ, Pazin MJ, Perry MD, Raha D, Reddy TE, Rozowsky J, Shoresh N, Sidow A, Slattery M, Stamatoyannopoulos JA, Tolstorukov MY, White KP, Xi S, Farnham PJ, Lieb JD, Wold BJ, Snyder M (2012) ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Res 22(9):1813–1831. doi:10.1101/gr.136184.111, 22/9/1813 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mazzoni EO, Mahony S, Iacovino M, Morrison CA, Mountoufaris G, Closser M, Whyte WA, Young RA, Kyba M, Gifford DK, Wichterle H (2011) Embryonic stem cell-based mapping of developmental transcriptional programs. Nat Methods 8(12):1056–1058. doi:10.1038/nmeth.1775, nmeth.1775 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Quail MA, Kozarewa I, Smith F, Scally A, Stephens PJ, Durbin R, Swerdlow H, Turner DJ (2008) A large genome center’s improvements to the Illumina sequencing system. Nat Methods 5(12):1005–1010. doi:10.1038/nmeth.1270, nmeth.1270 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Y, Negre N, Li Q, Mieczkowska JO, Slattery M, Liu T, Zhang Y, Kim TK, He HH, Zieba J, Ruan Y, Bickel PJ, Myers RM, Wold BJ, White KP, Lieb JD, Liu XS (2012) Systematic evaluation of factors influencing ChIP-seq fidelity. Nat Methods 9(6):609–614. doi:10.1038/nmeth.1985, nmeth.1985 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pickrell JK, Gaffney DJ, Gilad Y, Pritchard JK (2011) False positive peaks in ChIP-seq and other sequencing-based functional assays caused by unannotated high copy number regions. Bioinformatics 27(15):2144–2146. doi:10.1093/bioinformatics/btr354, btr354 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26(6):841–842. doi:10.1093/bioinformatics/btq033, btq033 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We are grateful for the help from Abdul Sesay and Leena Bhaw from the Advanced Sequencing Facility at the Francis Crick Institute. We thank Thomas Spruce for his comments on the manuscript. G.E.G. and J.C.S. were supported by the Medical Research Council (program number U117597140) and are now supported by the Francis Crick Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George E. Gentsch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Gentsch, G.E., Smith, J.C. (2017). Efficient Preparation of High-Complexity ChIP-Seq Profiles from Early Xenopus Embryos. In: Wajapeyee, N., Gupta, R. (eds) Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation. Methods in Molecular Biology, vol 1507. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6518-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6518-2_3

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6516-8

  • Online ISBN: 978-1-4939-6518-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics