Skip to main content

Accurate Detection of Differential Expression and Splicing Using Low-Level Features

  • Protocol
  • First Online:
Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1507))

Abstract

Gene expression can be quantified in high throughput using microarray technology. Here we describe how to accurately detect differential expression and splicing using a probe-level expression change averaging (PECA) method. PECA is available as an R package from Bioconductor (https://www.bioconductor.org), and it supports multiple operating systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cui X, Churchill GA (2003) Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 4(4):210

    Article  PubMed  PubMed Central  Google Scholar 

  2. Huber W, Von Heydebreck A, Sültmann H, Poustka A, Vingron M (2002) Variance stabilization applied to microarray data calibration and to the quantification of differential expression. Bioinformatics 18(suppl 1):S96–S104

    Article  PubMed  Google Scholar 

  3. Smyth GK (2005) Limma: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using R and Bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  4. Elo LL, Lahti L, Skottman H, Kyläniemi M, Lahesmaa R, Aittokallio T (2005) Integrating probe-level expression changes across generations of Affymetrix arrays. Nucleic Acids Res 33(22):e193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hochreiter S, Clevert DA, Obermayer K (2006) A new summarization method for affymetrix probe level data. Bioinformatics 22(8):943–949

    Article  CAS  PubMed  Google Scholar 

  6. Laiho A, Elo LL (2014) A note on an exon-based strategy to identify differentially expressed genes in RNA-Seq experiments. PLoS One 9(12), e115964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ohtaki M, Otani K, Hiyama K, Kamei N, Satoh K, Hiyama E (2010) A robust method for estimating gene expression states using affymetrix microarray probe level data. BMC Bioinformatics 11(1):183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Liu X, Milo M, Lawrence ND, Rattray M (2005) A tractable probabilistic model for affymetrix probe-level analysis across multiple chips. Bioinformatics 21(18):3637–3644

    Article  CAS  PubMed  Google Scholar 

  9. Liu X, Milo M, Lawrence ND, Rattray M (2006) Probe-level measurement error improves accuracy in detecting differential gene expression. Bioinformatics 22(17):2107–2113

    Article  CAS  PubMed  Google Scholar 

  10. Lemon WJ, Liyanarachchi S, You M (2003) A high performance test of differential gene expression for oligonucleotide arrays. Genome Biol 4(10):R67. doi:10.1186/gb-2003-4-10-r67

    Article  PubMed  PubMed Central  Google Scholar 

  11. Master SR, Stoddard AJ, Bailey LC, Pan TC, Dugan KD, La C (2005) Genomic analysis of early murine mammary gland development using novel probe-level algorithms. Genome Biol 6(2):R20. doi:10.1186/gb-2005-6-2-r20

    Article  PubMed  PubMed Central  Google Scholar 

  12. Lahti L, Torrente A, Elo LL, Brazma A, Rung J (2013) A fully scalable online pre-processing algorithm for short oligonucleotide microarray atlases. Nucleic Acids Res 41(10). doi:10.1093/nar/gkt229, 1212.5932v2

  13. Abramowitz M, Stegun IA (1972) Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol 55. Courier Dover Publications, New York

    Google Scholar 

  14. Laajala E, Aittokallio T, Lahesmaa R, Elo LL (2009) Probe-level estimation improves the detection of differential splicing in Affymetrix exon array studies. Genome Biol 10(7):R77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ (2008) Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat Genet 40(12):1413–1415. doi:10.1038/ng0609-762d

    Article  CAS  PubMed  Google Scholar 

  16. Ta C, Schweitzer AC, Chen TX, Staples MK, Lu G, Wang H, Williams A, Blume JE (2007) Discovery of tissue-specific exons using comprehensive human exon microarrays. Genome Biol 8(4):R64. doi:10.1186/gb-2007-8-4-r64

    Article  CAS  Google Scholar 

  17. Cline MS, Blume J, Cawley S, Clark Ta HJS, Lu G, Salomonis N, Wang H, Williams A (2005) ANOSVA: a statistical method for detecting splice variation from expression data. Bioinformatics 21(suppl 1):107–115. doi:10.1093/bioinformatics/bti1010

    Article  Google Scholar 

  18. Affymetrix (2005) Alternative transcript analysis methods for exon arrays. http://www.affymetrix.com/support/technical/whitepapers.affx or techical notes

  19. Bengtsson H, Simpson K, Bullard J, Hansen K (2008) aroma.affymetrix: a generic framework in R for analyzing small to very large affymetrix data sets in bounded memory. Tech. rep., Department of Statistics, University of California

    Google Scholar 

  20. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Series B Methodol 57:289–300

    Google Scholar 

  21. Affymetrix (2007) Identifying and validating alternative splicing events. http://www.affymetrix.com/support/technical/technotesmain.affx

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tomi Suomi or Laura L. Elo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Suomi, T., Elo, L.L. (2017). Accurate Detection of Differential Expression and Splicing Using Low-Level Features. In: Wajapeyee, N., Gupta, R. (eds) Eukaryotic Transcriptional and Post-Transcriptional Gene Expression Regulation. Methods in Molecular Biology, vol 1507. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6518-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6518-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6516-8

  • Online ISBN: 978-1-4939-6518-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics