Host-Derived Biomarkers for Risk Assessment of Invasive Fungal Diseases

  • Cristina Cunha
  • Samuel M. Gonçalves
  • Agostinho CarvalhoEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1508)


Invasive fungal diseases are major complications associated with the treatment of hematologic malignancies. The integration of host-derived biomarkers into clinical processes to predict the risk and progression of fungal disease is a promising approach in immunocompromised patients. Recent insights into human antifungal immunity have highlighted the remarkable influence of host genetics in modulating susceptibility to infection. In this chapter, we describe protocols to examine human genetic variation and to assess its functional consequences using the pattern recognition receptor PTX3 as an example.

Key words

Invasive fungal disease Single nucleotide polymorphism (SNP) Host biomarkers Long pentraxin 3 (PTX3) Antifungal immunity Immunocompromised patients Risk stratification Personalized medicine 



This work was supported by the European Society of Clinical Microbiology and Infectious Diseases (Research Grant 2012 to A.C.) and the Fundação para a Ciência e Tecnologia (FCT) (SFRH/BPD/96176/2013 to C.C. and IF/00735/2014 to A.C.). Further support was provided by FCT, cofunded by Programa Operacional Regional do Norte (ON.2—O Novo Norte), the Quadro de Referência Estratégico Nacional (QREN) through the Fundo Europeu de Desenvolvimento Regional (FEDER), and the Projeto Estratégico PEst-C/SAU/LA0026/2013.


  1. 1.
    Segal BH (2009) Aspergillosis. N Engl J Med 360(18):1870–1884. doi: 10.1056/NEJMra0808853 CrossRefPubMedGoogle Scholar
  2. 2.
    Kontoyiannis DP, Marr KA, Park BJ, Alexander BD, Anaissie EJ, Walsh TJ et al (2010) Prospective surveillance for invasive fungal infections in hematopoietic stem cell transplant recipients, 2001-2006: overview of the Transplant-Associated Infection Surveillance Network (TRANSNET) Database. Clin Infect Dis 50(8):1091–1100. doi: 10.1086/651263 CrossRefPubMedGoogle Scholar
  3. 3.
    Pagano L, Caira M, Candoni A, Offidani M, Martino B, Specchia G et al (2010) Invasive aspergillosis in patients with acute myeloid leukemia: a SEIFEM-2008 registry study. Haematologica 95(4):644–650. doi: 10.3324/haematol.2009.012054 CrossRefPubMedGoogle Scholar
  4. 4.
    Vinh DC (2011) Insights into human antifungal immunity from primary immunodeficiencies. Lancet Infect Dis 11(10):780–792. doi: 10.1016/S1473-3099(11)70217-1 CrossRefPubMedGoogle Scholar
  5. 5.
    Cunha C, Aversa F, Romani L, Carvalho A (2013) Human genetic susceptibility to invasive aspergillosis. PLoS Pathog 9(8), e1003434. doi: 10.1371/journal.ppat.1003434 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Wojtowicz A, Bochud PY (2014) Host genetics of invasive Aspergillus and Candida infections. Semin Immunopathol. doi: 10.1007/s00281-014-0468-y
  7. 7.
    Koldehoff M, Beelen DW, Elmaagacli AH (2013) Increased susceptibility for aspergillosis and post-transplant immune deficiency in patients with gene variants of TLR4 after stem cell transplantation. Transpl Infect Dis 15(5):533–539. doi: 10.1111/tid.12115 PubMedGoogle Scholar
  8. 8.
    Bochud PY, Chien JW, Marr KA, Leisenring WM, Upton A, Janer M et al (2008) Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med 359(17):1766–1777. doi: 10.1056/NEJMoa0802629 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Carvalho A, Pasqualotto AC, Pitzurra L, Romani L, Denning DW, Rodrigues F (2008) Polymorphisms in toll-like receptor genes and susceptibility to pulmonary aspergillosis. J Infect Dis 197(4):618–621. doi: 10.1086/526500 CrossRefPubMedGoogle Scholar
  10. 10.
    Carvalho A, Cunha C, Carotti A, Aloisi T, Guarrera O, Di Ianni M et al (2009) Polymorphisms in Toll-like receptor genes and susceptibility to infections in allogeneic stem cell transplantation. Exp Hematol 37(9):1022–1029. doi: 10.1016/j.exphem.2009.06.004 CrossRefPubMedGoogle Scholar
  11. 11.
    Carvalho A, De Luca A, Bozza S, Cunha C, D'Angelo C, Moretti S et al (2012) TLR3 essentially promotes protective class I-restricted memory CD8(+) T-cell responses to Aspergillus fumigatus in hematopoietic transplanted patients. Blood 119(4):967–977. doi: 10.1182/blood-2011-06-362582
  12. 12.
    Potenza L, Vallerini D, Barozzi P, Riva G, Forghieri F, Beauvais A et al (2013) Characterization of specific immune responses to different Aspergillus antigens during the course of invasive Aspergillosis in hematologic patients. PLoS One 8(9), e74326. doi: 10.1371/journal.pone.0074326
  13. 13.
    Sorci G, Giovannini G, Riuzzi F, Bonifazi P, Zelante T, Zagarella S et al (2011) The danger signal S100B integrates pathogen- and danger-sensing pathways to restrain inflammation. PLoS Pathog 7(3), e1001315. doi: 10.1371/journal.ppat.1001315 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cunha C, Giovannini G, Pierini A, Bell AS, Sorci G, Riuzzi F et al (2011) Genetically-determined hyperfunction of the S100B/RAGE axis is a risk factor for aspergillosis in stem cell transplant recipients. PLoS One 6(11), e27962. doi: 10.1371/journal.pone.0027962 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Kesh S, Mensah NY, Peterlongo P, Jaffe D, Hsu K, M VDB et al. TLR1 and TLR6 polymorphisms are associated with susceptibility to invasive aspergillosis after allogeneic stem cell transplantation. Ann NY Acad Sci. 2005;1062:95–103. doi:  10.1196/annals.1358.012
  16. 16.
    Grube M, Loeffler J, Mezger M, Kruger B, Echtenacher B, Hoffmann P et al (2013) TLR5 stop codon polymorphism is associated with invasive aspergillosis after allogeneic stem cell transplantation. Med Mycol 51(8):818–825. doi: 10.3109/13693786.2013.809630 CrossRefPubMedGoogle Scholar
  17. 17.
    Chai LY, de Boer MG, van der Velden WJ, Plantinga TS, van Spriel AB, Jacobs C et al (2011) The Y238X stop codon polymorphism in the human beta-glucan receptor dectin-1 and susceptibility to invasive aspergillosis. J Infect Dis 203(5):736–743. doi: 10.1093/infdis/jiq102 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Cunha C, Di Ianni M, Bozza S, Giovannini G, Zagarella S, Zelante T et al (2010) Dectin-1 Y238X polymorphism associates with susceptibility to invasive aspergillosis in hematopoietic transplantation through impairment of both recipient- and donor-dependent mechanisms of antifungal immunity. Blood 116(24):5394–5402. doi: 10.1182/blood-2010-04-279307 CrossRefPubMedGoogle Scholar
  19. 19.
    Sainz J, Lupianez CB, Segura-Catena J, Vazquez L, Rios R, Oyonarte S et al (2012) Dectin-1 and DC-SIGN polymorphisms associated with invasive pulmonary Aspergillosis infection. PLoS One 7(2), e32273. doi: 10.1371/journal.pone.0032273 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Ferwerda B, Ferwerda G, Plantinga TS, Willment JA, van Spriel AB, Venselaar H et al (2009) Human dectin-1 deficiency and mucocutaneous fungal infections. N Engl J Med 361(18):1760–1767. doi: 10.1056/NEJMoa0901053 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Carvalho A, Cunha C, Di Ianni M, Pitzurra L, Aloisi T, Falzetti F et al (2010) Prognostic significance of genetic variants in the IL-23/Th17 pathway for the outcome of T cell-depleted allogeneic stem cell transplantation. Bone Marrow Transplant 45(11):1645–1652. doi: 10.1038/bmt.2010.28 CrossRefPubMedGoogle Scholar
  22. 22.
    Mezger M, Steffens M, Beyer M, Manger C, Eberle J, Toliat MR et al (2008) Polymorphisms in the chemokine (C-X-C motif) ligand 10 are associated with invasive aspergillosis after allogeneic stem-cell transplantation and influence CXCL10 expression in monocyte-derived dendritic cells. Blood 111(2):534–536. doi: 10.1182/blood-2007-05-090928 CrossRefPubMedGoogle Scholar
  23. 23.
    Sainz J, Hassan L, Perez E, Romero A, Moratalla A, Lopez-Fernandez E et al (2007) Interleukin-10 promoter polymorphism as risk factor to develop invasive pulmonary aspergillosis. Immunol Lett 109(1):76–82. doi: 10.1016/j.imlet.2007.01.005 CrossRefPubMedGoogle Scholar
  24. 24.
    Sainz J, Perez E, Gomez-Lopera S, Jurado M (2008) IL1 gene cluster polymorphisms and its haplotypes may predict the risk to develop invasive pulmonary aspergillosis and modulate C-reactive protein level. J Clin Immunol 28(5):473–485. doi: 10.1007/s10875-008-9197-0 CrossRefPubMedGoogle Scholar
  25. 25.
    Sainz J, Perez E, Hassan L, Moratalla A, Romero A, Collado MD et al (2007) Variable number of tandem repeats of TNF receptor type 2 promoter as genetic biomarker of susceptibility to develop invasive pulmonary aspergillosis. Hum Immunol 68(1):41–50. doi: 10.1016/j.humimm.2006.10.011 CrossRefPubMedGoogle Scholar
  26. 26.
    Sainz J, Salas-Alvarado I, Lopez-Fernandez E, Olmedo C, Comino A, Garcia F et al (2010) TNFR1 mRNA expression level and TNFR1 gene polymorphisms are predictive markers for susceptibility to develop invasive pulmonary aspergillosis. Int J Immunopathol Pharmacol 23(2):423–436PubMedGoogle Scholar
  27. 27.
    Wojtowicz A, Gresnigt MS, Lecompte T, Bibert S, Manuel O, Joosten LA et al (2014) IL1B and DEFB1 polymorphisms increase susceptibility to invasive mould infection after solid-organ transplantation. J Infect Dis. doi: 10.1093/infdis/jiu636
  28. 28.
    Kumar V, Cheng SC, Johnson MD, Smeekens SP, Wojtowicz A, Giamarellos-Bourboulis E et al (2014) Immunochip SNP array identifies novel genetic variants conferring susceptibility to candidaemia. Nat Commun 5:4675. doi: 10.1038/ncomms5675 CrossRefPubMedGoogle Scholar
  29. 29.
    Smeekens SP, Ng A, Kumar V, Johnson MD, Plantinga TS, van Diemen C et al (2013) Functional genomics identifies type I interferon pathway as central for host defense against Candida albicans. Nat Commun 4:1342. doi: 10.1038/ncomms2343
  30. 30.
    Fairfax BP, Knight JC (2014) Genetics of gene expression in immunity to infection. Curr Opin Immunol 30C:63–71. doi: 10.1016/j.coi.2014.07.001 CrossRefGoogle Scholar
  31. 31.
    Durrant C, Tayem H, Yalcin B, Cleak J, Goodstadt L, de Villena FP et al (2011) Collaborative cross mice and their power to map host susceptibility to Aspergillus fumigatus infection. Genome Res 21(8):1239–1248. doi: 10.1101/gr.118786.110
  32. 32.
    Zaas AK, Liao G, Chien JW, Weinberg C, Shore D, Giles SS et al (2008) Plasminogen alleles influence susceptibility to invasive aspergillosis. PLoS Genet 4(6), e1000101. doi: 10.1371/journal.pgen.1000101 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Lambourne J, Agranoff D, Herbrecht R, Troke PF, Buchbinder A, Willis F et al (2009) Association of mannose-binding lectin deficiency with acute invasive aspergillosis in immunocompromised patients. Clin Infect Dis 49(10):1486–1491. doi: 10.1086/644619 CrossRefPubMedGoogle Scholar
  34. 34.
    Cunha C, Aversa F, Lacerda JF, Busca A, Kurzai O, Grube M et al (2014) Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N Engl J Med 370(5):421–432. doi: 10.1056/NEJMoa1211161 CrossRefPubMedGoogle Scholar
  35. 35.
    Wojtowicz A, Lecompte TD, Bibert S, Manuel O, Rueger S, Berger C et al (2015) PTX3 polymorphisms and invasive mould infections after solid organ transplant. Clin Infect Dis 61(4):619–622. doi: 10.1093/cid/civ386
  36. 36.
    Cunha C, Monteiro AA, Oliveira-Coelho A, Kuhne J, Rodrigues F, Sasaki SD et al (2015) PTX3-based genetic testing for risk of aspergillosis after lung transplant. Clin Infect Dis 61(12):1893–1894. doi: 10.1093/cid/civ679 CrossRefPubMedGoogle Scholar
  37. 37.
    Mauri T, Coppadoro A, Bombino M, Bellani G, Zambelli V, Fornari C et al (2014) Alveolar pentraxin 3 as an early marker of microbiologically confirmed pneumonia: a threshold-finding prospective observational study. Crit Care 18(5):562. doi: 10.1186/s13054-014-0562-5 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Carvalho A, Cunha C, Bistoni F, Romani L (2012) Immunotherapy of aspergillosis. Clin Microbiol Infect 18(2):120–125. doi: 10.1111/j.1469-0691.2011.03681.x CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Cristina Cunha
    • 1
    • 2
  • Samuel M. Gonçalves
    • 1
    • 2
  • Agostinho Carvalho
    • 1
    • 2
    Email author
  1. 1.Life and Health Sciences Research Institute (ICVS), School of Health SciencesUniversity of MinhoBragaPortugal
  2. 2.ICVS/3B’s—PT Government Associate LaboratoryBraga/GuimarãesPortugal

Personalised recommendations