Systemic Antifungal Agents: Current Status and Projected Future Developments

  • Seyedmojtaba SeyedmousaviEmail author
  • Haleh Rafati
  • Macit Ilkit
  • Ali Tolooe
  • Mohammad T. Hedayati
  • Paul Verweij
Part of the Methods in Molecular Biology book series (MIMB, volume 1508)


By definition, an antifungal agent is a drug that selectively destroys fungal pathogens with minimal side effects to the host. Despite an increase in the prevalence of fungal infections particularly in immunocompromised patients, only a few classes of antifungal drugs are available for therapy, and they exhibit limited efficacy in the treatment of life-threatening infections. These drugs include polyenes, azoles, echinocandins, and nucleoside analogs. This chapter focuses on the currently available classes and representatives of systemic antifungal drugs in clinical use. We further discuss the unmet clinical needs in the antifungal research field; efforts in reformulation of available drugs such as Amphotericin B nanoparticles for oral drug delivery; development of new agents of known antifungal drug classes, such as albaconazole, SCY-078, and biafungin; and new drugs with novel targets for treatment of invasive fungal infections, including nikkomycin Z, sordarin derivatives, VT-1161 and VT-1129, F901318, VL-2397, and T-2307.

Key words

Antifungal agents Systemic fungal infections Amphotericin B nanoparticles Albaconazole SCY-078 Biafungin-Nikkomycin Z Sordarins VT-1161 VT-1129 F901318 VL-2397 T-2307 


Conflicts of Interest

S.S. received research grant from Astellas Pharma B.V. P.E.V. has served as a consultant and received research grants from Astellas, Basilea, Gilead Sciences, Merck, and Pfizer. All other authors have no conflict of interests.


  1. 1.
    Kohler JR, Casadevall A, Perfect J (2015) The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med 5:a019273CrossRefGoogle Scholar
  2. 2.
    Procop GW (2010) Molecular diagnostics for invasive fungal infections: a call for refinement and implementation. J Mol Diagn 12:17–19PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Oren I, Paul M (2014) Up to date epidemiology, diagnosis and management of invasive fungal infections. Clin Microbiol Infect 20(Suppl 6):1–4PubMedCrossRefGoogle Scholar
  4. 4.
    Pfaller MA, Pappas PG, Wingard JR (2006) Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis 43:S3–S14CrossRefGoogle Scholar
  5. 5.
    Slavin M, van Hal S, Sorrell TC, Lee A, Marriott DJ, Daveson K, Kennedy K, Hajkowicz K, Halliday C, Athan E, Bak N, Cheong E, Heath CH, Orla Morrissey C, Kidd S, Beresford R, Blyth C, Korman TM, Owen Robinson J, Meyer W, Chen SC, Australia, New Zealand Mycoses Interest Groups (2015) Invasive infections due to filamentous fungi other than Aspergillus: epidemiology and determinants of mortality. Clin Microbiol Infect 21:490 e491–490 e410CrossRefGoogle Scholar
  6. 6.
    Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165rv113CrossRefGoogle Scholar
  7. 7.
    Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36:1–53PubMedCrossRefGoogle Scholar
  8. 8.
    Slavin M, van Hal S, Sorrell TC, Lee A, Marriott DJ, Daveson K, Kennedy K, Hajkowicz K, Halliday C, Athan E, Bak N, Cheong E, Heath CH, Orla Morrissey C, Kidd S, Beresford R, Blyth C, Korman TM, Owen Robinson J, Meyer W, Chen SC (2015) Invasive infections due to filamentous fungi other than Aspergillus: epidemiology and determinants of mortality. Clin Microbiol Infect 21:490.e491–490.e410CrossRefGoogle Scholar
  9. 9.
    Lai CC, Tan CK, Huang YT, Shao PL, Hsueh PR (2008) Current challenges in the management of invasive fungal infections. J Infect Chemother 14:77–85PubMedCrossRefGoogle Scholar
  10. 10.
    Richardson MD (2005) Changing patterns and trends in systemic fungal infections. J Antimicrob Chemother 56(Suppl 1):i5–i11PubMedCrossRefGoogle Scholar
  11. 11.
    Calderone R, Sun N, Gay-Andrieu F, Groutas W, Weerawarna P, Prasad S, Alex D, Li D (2014) Antifungal drug discovery: the process and outcomes. Future Microbiol 9:791–805PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Maertens J, Marchetti O, Herbrecht R, Cornely OA, Fluckiger U, Frere P, Gachot B, Heinz WJ, Lass-Florl C, Ribaud P, Thiebaut A, Cordonnier C, Third European Conference on Infections in Leukemia (2011) European guidelines for antifungal management in leukemia and hematopoietic stem cell transplant recipients: summary of the ECIL 3–2009 update. Bone Marrow Transplant 46:709–718PubMedCrossRefGoogle Scholar
  13. 13.
    Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Segal BH, Steinbach WJ, Stevens DA, van Burik JA, Wingard JR, Patterson TF, Infectious Diseases Society of America (2008) Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 46:327–360PubMedCrossRefGoogle Scholar
  14. 14.
    Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, Gadhwe S (2012) The biology and chemistry of antifungal agents: a review. Bioorg Med Chem 20:5678–5698PubMedCrossRefGoogle Scholar
  15. 15.
    Groll AH, Piscitelli SC, Walsh TJ (1998) Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv Pharmacol 44:343–500PubMedCrossRefGoogle Scholar
  16. 16.
    Dodds Ashley ES, Lewis R, Lewis JS, Martin C, Andes D (2006) Pharmacology of systemic antifungal agents. Clin Infect Dis 43:S28–S39CrossRefGoogle Scholar
  17. 17.
    Gupta AK, Cooper EA (2008) Update in antifungal therapy of dermatophytosis. Mycopathologia 166:353–367PubMedCrossRefGoogle Scholar
  18. 18.
    Sugiura K, Sugimoto N, Hosaka S, Katafuchi-Nagashima M, Arakawa Y, Tatsumi Y, Jo Siu W, Pillai R (2014) The low keratin affinity of efinaconazole contributes to its nail penetration and fungicidal activity in topical onychomycosis treatment. Antimicrob Agents Chemother 58:3837–3842PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Trommer H, Neubert RH (2006) Overcoming the stratum corneum: the modulation of skin penetration. A review. Skin Pharmacol Physiol 19:106–121PubMedCrossRefGoogle Scholar
  20. 20.
    Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, Burke MD (2012) Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A 109:2234–2239PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    de Kruijff B, Gerritsen WJ, Oerlemans A, Demel RA, van Deenen LL (1974) Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. I. Specificity of the membrane permeability changes induced by the polyene antibiotics. Biochim Biophys Acta 339:30–43PubMedCrossRefGoogle Scholar
  22. 22.
    Bolard J (1986) How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta 864:257–304PubMedCrossRefGoogle Scholar
  23. 23.
    Dutcher JD (1968) The discovery and development of amphotericin B. Dis Chest 54(Suppl 1):296–298CrossRefGoogle Scholar
  24. 24.
    Gallis HA, Drew RH, Pickard WW (1990) Amphotericin B: 30 years of clinical experience. Rev Infect Dis 12:308–329PubMedCrossRefGoogle Scholar
  25. 25.
    Hamill RJ (2013) Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73:919–934PubMedCrossRefGoogle Scholar
  26. 26.
    Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH (2003) Amphotericin B: time for a new “gold standard”. Clin Infect Dis 37:415–425PubMedCrossRefGoogle Scholar
  27. 27.
    Barchiesi F, Colombo AL, McGough DA, Rinaldi MG (1994) Comparative study of broth macrodilution and microdilution techniques for in vitro antifungal susceptibility testing of yeasts by using the National Committee for Clinical Laboratory Standards’ proposed standard. J Clin Microbiol 32:2494–2500Google Scholar
  28. 28.
    Pfaller MA, Diekema DJ, Messer SA, Boyken L, Hollis RJ, Jones RN (2004) In vitro susceptibilities of rare Candida bloodstream isolates to ravuconazole and three comparative antifungal agents. Diagn Microbiol Infect Dis 48:101–105Google Scholar
  29. 29.
    Ostrosky-Zeichner L, Rex JH, Pappas PG, Hamill RJ, Larsen RA, Horowitz HW, Powderly WG, Hyslop N, Kauffman CA, Cleary J, Mangino JE, Lee J (2003) Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrob Agents Chemother 47:3149–3154PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Hadfield TL, Smith MB, Winn RE, Rinaldi MG, Guerra C (1987) Mycoses caused by Candida lusitaniae. Rev Infect Dis 9:1006–1012PubMedCrossRefGoogle Scholar
  31. 31.
    Walsh TJ, Melcher GP, Rinaldi MG, Lecciones J, McGough DA, Kelly P, Lee J, Callender D, Rubin M, Pizzo PA (1990) Trichosporon beigelii, an emerging pathogen resistant to amphotericin B. J Clin Microbiol 28:1616–1622PubMedPubMedCentralGoogle Scholar
  32. 32.
    Sutton DA, Sanche SE, Revankar SG, Fothergill AW, Rinaldi MG (1999) In vitro amphotericin B resistance in clinical isolates of Aspergillus terreus, with a head-to-head comparison to voriconazole. J Clin Microbiol 37:2343–2345Google Scholar
  33. 33.
    Eng RH, Person A, Mangura C, Chmel H, Corrado M (1981) Susceptibility of zygomycetes to amphotericin B, miconazole, and ketoconazole. Antimicrob Agents Chemother 20:688–690PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Collins MS, Pappagianis D (1977) Uniform susceptibility of various strains of Coccidioides immitis to amphotericin B. Antimicrob Agents Chemother 11:1049–1055PubMedPubMedCentralCrossRefGoogle Scholar
  35. 35.
    Day JN, Chau TT, Lalloo DG (2013) Combination antifungal therapy for cryptococcal meningitis. N Engl J Med 368:2522–2523PubMedCrossRefGoogle Scholar
  36. 36.
    Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, Harrison TS, Larsen RA, Lortholary O, Nguyen MH, Pappas PG, Powderly WG, Singh N, Sobel JD, Sorrell TC (2010) Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin Infect Dis 50:291–322PubMedCrossRefGoogle Scholar
  37. 37.
    Hazen EL, Brown R (1951) Fungicidin, an antibiotic produced by a soil actinomycete. Proc Soc Exp Biol Med 76:93–97PubMedCrossRefGoogle Scholar
  38. 38.
    Hofstra W, de Vries-Hospers HG, van der Waaij D (1979) Concentrations of nystatin in faeces after oral administration of various doses of nystatin. Infection 7:166–170PubMedCrossRefGoogle Scholar
  39. 39.
    Semis R, Nili SS, Munitz A, Zaslavsky Z, Polacheck I, Segal E (2012) Pharmacokinetics, tissue distribution and immunomodulatory effect of intralipid formulation of nystatin in mice. J Antimicrob Chemother 67:1716–1721PubMedCrossRefGoogle Scholar
  40. 40.
    Oakley KL, Moore CB, Denning DW (1999) Comparison of in vitro activity of liposomal nystatin against Aspergillus species with those of nystatin, amphotericin B (AB) deoxycholate, AB colloidal dispersion, liposomal AB, AB lipid complex, and itraconazole. Antimicrob Agents Chemother 43:1264–1266Google Scholar
  41. 41.
    Arikan S (2002) Lipid-based antifungal agents: a concise overview. Cell Mol Biol Lett 7:919–922PubMedGoogle Scholar
  42. 42.
    Bergan T, Vangdal M (1983) In vitro activity of antifungal agents against yeast species. Chemotherapy 29:104–110PubMedCrossRefGoogle Scholar
  43. 43.
    Hussain Qadri SM, Flournoy DJ, Qadri SG, Ramirez EG (1986) Susceptibility of clinical isolates of yeasts to anti-fungal agents. Mycopathologia 95:183–187PubMedCrossRefGoogle Scholar
  44. 44.
    Rezabek GH, Friedman AD (1992) Superficial fungal infections of the skin. Diagnosis and current treatment recommendations. Drugs 43:674–682PubMedCrossRefGoogle Scholar
  45. 45.
    Pappas PG, Kauffman CA, Andes D, Benjamin DK Jr, Calandra TF, Edwards JE Jr, Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L, Reboli AC, Rex JH, Walsh TJ, Sobel JD, Infectious Diseases Society of America (2009) Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48:503–535PubMedCrossRefGoogle Scholar
  46. 46.
    Ullmann AJ, Akova M, Herbrecht R, Viscoli C, Arendrup MC, Arikan-Akdagli S, Bassetti M, Bille J, Calandra T, Castagnola E, Cornely OA, Donnelly JP, Garbino J, Groll AH, Hope WW, Jensen HE, Kullberg BJ, Lass-Florl C, Lortholary O, Meersseman W, Petrikkos G, Richardson MD, Roilides E, Verweij PE, Cuenca-Estrella M, Group EFIS (2012) ESCMID* guideline for the diagnosis and management of Candida diseases 2012: adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clin Microbiol Infect 18(Suppl 7):53–67PubMedCrossRefGoogle Scholar
  47. 47.
    Hope WW, Castagnola E, Groll AH, Roilides E, Akova M, Arendrup MC, Arikan-Akdagli S, Bassetti M, Bille J, Cornely OA, Cuenca-Estrella M, Donnelly JP, Garbino J, Herbrecht R, Jensen HE, Kullberg BJ, Lass-Florl C, Lortholary O, Meersseman W, Petrikkos G, Richardson MD, Verweij PE, Viscoli C, Ullmann AJ, Group EFIS (2012) ESCMID* guideline for the diagnosis and management of Candida diseases 2012: prevention and management of invasive infections in neonates and children caused by Candida spp. Clin Microbiol Infect 18(Suppl 7):38–52Google Scholar
  48. 48.
    Maertens JA (2004) History of the development of azole derivatives. Clin Microbiol Infect 10(Suppl 1):1–10PubMedCrossRefGoogle Scholar
  49. 49.
    Lass-Florl C (2011) Triazole antifungal agents in invasive fungal infections: a comparative review. Drugs 71:2405–2419PubMedCrossRefGoogle Scholar
  50. 50.
    Groll AH, Gea-Banacloche JC, Glasmacher A, Just-Nuebling G, Maschmeyer G, Walsh TJ (2003) Clinical pharmacology of antifungal compounds. Infect Dis Clin North Am 17(159-191):ixGoogle Scholar
  51. 51.
    Mohr J, Johnson M, Cooper T, Lewis JS, Ostrosky-Zeichner L (2008) Current options in antifungal pharmacotherapy. Pharmacotherapy 28:614–645PubMedCrossRefGoogle Scholar
  52. 52.
    Gupta AK, Lyons DC (2015) The rise and fall of oral ketoconazole. J Cutan Med Surg 19:352–357PubMedCrossRefGoogle Scholar
  53. 53.
    EMA (2012) European public assessment report (EPAR) for Noxafil, 06/09/2012 ed doi: European Medicines Agency
  54. 54.
    EMA (2012) European public assessment report (EPAR) for Vfend, 04/12/2012 ed doi: European Medicines Agency
  55. 55.
    Warrilow AG, Martel CM, Parker JE, Melo N, Lamb DC, Nes WD, Kelly DE, Kelly SL (2010) Azole binding properties of Candida albicans sterol 14-alpha demethylase (CaCYP51). Antimicrob Agents Chemother 54:4235–4245Google Scholar
  56. 56.
    EMA (2012) European public assessment report (EPAR) for Diflucan, 02/02/2012 ed doi: European Medicines Agency
  57. 57.
    Sun HY, Singh N (2011) Mucormycosis: its contemporary face and management strategies. Lancet Infect Dis 11:301–311PubMedCrossRefGoogle Scholar
  58. 58.
    Lewis RE, Liao G, Wang W, Prince RA, Kontoyiannis DP (2011) Voriconazole pre-exposure selects for breakthrough mucormycosis in a mixed model of Aspergillus fumigatus-Rhizopus oryzae pulmonary infection. Virulence 2:348–355PubMedCrossRefGoogle Scholar
  59. 59.
    Manavathu EK, Cutright JL, Loebenberg D, Chandrasekar PH (2000) A comparative study of the in vitro susceptibilities of clinical and laboratory-selected resistant isolates of Aspergillus spp. to amphotericin B, itraconazole, voriconazole and posaconazole (SCH 56592). J Antimicrob Chemother 46:229–234Google Scholar
  60. 60.
    Herbrecht R, Denning DW, Patterson TF, Bennett JE, Greene RE, Oestmann JW, Kern WV, Marr KA, Ribaud P, Lortholary O, Sylvester R, Rubin RH, Wingard JR, Stark P, Durand C, Caillot D, Thiel E, Chandrasekar PH, Hodges MR, Schlamm HT, Troke PF, de Pauw B (2002) Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 347:408–415PubMedCrossRefGoogle Scholar
  61. 61.
    Cornely OA, Maertens J, Winston DJ, Perfect J, Ullmann AJ, Walsh TJ, Helfgott D, Holowiecki J, Stockelberg D, Goh YT, Petrini M, Hardalo C, Suresh R, Angulo-Gonzalez D (2007) Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N Engl J Med 356:348–359PubMedCrossRefGoogle Scholar
  62. 62.
    Ullmann AJ, Lipton JH, Vesole DH, Chandrasekar P, Langston A, Tarantolo SR, Greinix H, Morais de Azevedo W, Reddy V, Boparai N, Pedicone L, Patino H, Durrant S (2007) Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease. N Engl J Med 356:335–347PubMedCrossRefGoogle Scholar
  63. 63.
    Pasqualotto AC, Denning DW (2008) New and emerging treatments for fungal infections. J Antimicrob Chemother 61(Suppl 1):i19–i30PubMedCrossRefGoogle Scholar
  64. 64.
    Thompson GR 3rd, Wiederhold NP (2010) Isavuconazole: a comprehensive review of spectrum of activity of a new triazole. Mycopathologia 170:291–313PubMedCrossRefGoogle Scholar
  65. 65.
    Falci DR, Pasqualotto AC (2013) Profile of isavuconazole and its potential in the treatment of severe invasive fungal infections. Infect Drug Resist 6:163–174PubMedPubMedCentralGoogle Scholar
  66. 66.
    Livermore J, Hope W (2012) Evaluation of the pharmacokinetics and clinical utility of isavuconazole for treatment of invasive fungal infections. Expert Opin Drug Metab Toxicol 8:759–765PubMedCrossRefGoogle Scholar
  67. 67.
    Ohwada J, Tsukazaki M, Hayase T, Oikawa N, Isshiki Y, Fukuda H, Mizuguchi E, Sakaitani M, Shiratori Y, Yamazaki T, Ichihara S, Umeda I, Shimma N (2003) Design, synthesis and antifungal activity of a novel water soluble prodrug of antifungal triazole. Bioorg Med Chem Lett 13:191–196PubMedCrossRefGoogle Scholar
  68. 68.
    Schmitt-Hoffmann A, Roos B, Maares J, Heep M, Spickerman J, Weidekamm E, Brown T, Roehrle M (2006) Multiple-dose pharmacokinetics and safety of the new antifungal triazole BAL4815 after intravenous infusion and oral administration of its prodrug, BAL8557, in healthy volunteers. Antimicrob Agents Chemother 50:286–293PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Schmitt-Hoffmann A, Roos B, Heep M, Schleimer M, Weidekamm E, Brown T, Roehrle M, Beglinger C (2006) Single-ascending-dose pharmacokinetics and safety of the novel broad-spectrum antifungal triazole BAL4815 after intravenous infusions (50, 100, and 200 milligrams) and oral administrations (100, 200, and 400 milligrams) of its prodrug, BAL8557, in healthy volunteers. Antimicrob Agents Chemother 50:279–285PubMedPubMedCentralCrossRefGoogle Scholar
  70. 70.
    Odds FC (2006) Drug evaluation: BAL-8557—a novel broad-spectrum triazole antifungal. Curr Opin Investig Drugs 7:766–772PubMedGoogle Scholar
  71. 71.
    Martin de la Escalera C, Aller AI, Lopez-Oviedo E, Romero A, Martos AI, Canton E, Peman J, Garcia Martos P, Martin-Mazuelos E (2008) Activity of BAL 4815 against filamentous fungi. J Antimicrob Chemother 61:1083–1086PubMedCrossRefGoogle Scholar
  72. 72.
    Rudramurthy SM, Chakrabarti A, Geertsen E, Mouton JW, Meis JF (2011) In vitro activity of isavuconazole against 208 Aspergillus flavus isolates in comparison with 7 other antifungal agents: assessment according to the methodology of the European Committee on Antimicrobial Susceptibility Testing. Diagn Microbiol Infect Dis 71:370–377Google Scholar
  73. 73.
    Shivaprakash MR, Geertsen E, Chakrabarti A, Mouton JW, Meis JF (2011) In vitro susceptibility of 188 clinical and environmental isolates of Aspergillus flavus for the new triazole isavuconazole and seven other antifungal drugs. Mycoses 54:e583–e589PubMedCrossRefGoogle Scholar
  74. 74.
    Perkhofer S, Lechner V, Lass-Florl C (2009) In vitro activity of Isavuconazole against Aspergillus species and zygomycetes according to the methodology of the European Committee on Antimicrobial Susceptibility Testing. Antimicrob Agents Chemother 53:1645–1647Google Scholar
  75. 75.
    Guinea J, Pelaez T, Recio S, Torres-Narbona M, Bouza E (2008) In vitro antifungal activities of isavuconazole (BAL4815), voriconazole, and fluconazole against 1,007 isolates of zygomycete, Candida, Aspergillus, Fusarium, and Scedosporium species. Antimicrob Agents Chemother 52:1396–1400PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Warn PA, Sharp A, Denning DW (2006) In vitro activity of a new triazole BAL4815, the active component of BAL8557 (the water-soluble prodrug), against Aspergillus spp. J Antimicrob Chemother 57:135–138Google Scholar
  77. 77.
    Espinel-Ingroff A, Chowdhary A, Gonzalez GM, Lass-Florl C, Martin-Mazuelos E, Meis J, Pelaez T, Pfaller MA, Turnidge J (2013) Multicenter study of isavuconazole MIC distributions and epidemiological cutoff values for Aspergillus spp. for the CLSI M38-A2 broth microdilution method. Antimicrob Agents Chemother 57:3823–3828PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Seyedmousavi S, Rijs AJ, Melchers WJ, Mouton JW, Verweij PE (2013) In vitro activity of isavuconazole compared with itraconazole, voriconazole, and posaconazole in azole-resistant Aspergillus fumigatus Abstract pM-1377. 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Denver, Co, USAGoogle Scholar
  79. 79.
    Gregson L, Goodwin J, Johnson A, McEntee L, Moore CB, Richardson M, Hope WW, Howard SJ (2013) In vitro susceptibility of Aspergillus fumigatus to isavuconazole: correlation with itraconazole, voriconazole, and posaconazole. Antimicrob Agents Chemother 57:5778–5780PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Seyedmousavi S, Verweij PE, Mouton JW (2015) Isavuconazole, a broad-spectrum triazole for the treatment of systemic fungal diseases. Expert Rev Anti Infect Ther 13:9–27PubMedCrossRefGoogle Scholar
  81. 81.
    Denning DW (2002) Echinocandins: a new class of antifungal. J Antimicrob Chemother 49:889–891PubMedCrossRefGoogle Scholar
  82. 82.
    Mukherjee PK, Sheehan D, Puzniak L, Schlamm H, Ghannoum MA (2011) Echinocandins: are they all the same? J Chemother 23:319–325PubMedCrossRefGoogle Scholar
  83. 83.
    Nyfeler R, Keller-Schierlein W (1974) Metabolites of microorganisms. 143. Echinocandin B, a novel polypeptide-antibiotic from Aspergillus nidulans var. echinulatus: isolation and structural components. Helv Chim Acta 57:2459–2477PubMedCrossRefGoogle Scholar
  84. 84.
    Kurtz MB, Douglas CM (1997) Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol 35:79–86PubMedCrossRefGoogle Scholar
  85. 85.
    Eschenauer G, Depestel DD, Carver PL (2007) Comparison of echinocandin antifungals. Ther Clin Risk Manag 3:71–97PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Bachmann SP, Patterson TF, Lopez-Ribot JL (2002) In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J Clin Microbiol 40:2228–2230Google Scholar
  87. 87.
    Bachmann SP, VandeWalle K, Ramage G, Patterson TF, Wickes BL, Graybill JR, Lopez-Ribot JL (2002) In vitro activity of caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother 46:3591–3596Google Scholar
  88. 88.
    Bowman JC, Abruzzo GK, Flattery AM, Gill CJ, Hickey EJ, Hsu MJ, Kahn JN, Liberator PA, Misura AS, Pelak BA, Wang TC, Douglas CM (2006) Efficacy of caspofungin against Aspergillus flavus, Aspergillus terreus, and Aspergillus nidulans. Antimicrob Agents Chemother 50:4202–4205PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Kohler S, Wheat LJ, Connolly P, Schnizlein-Bick C, Durkin M, Smedema M, Goldberg J, Brizendine E (2000) Comparison of the echinocandin caspofungin with amphotericin B for treatment of histoplasmosis following pulmonary challenge in a murine model. Antimicrob Agents Chemother 44:1850–1854PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Seyedmousavi S, Samerpitak K, Rijs AJ, Melchers WJ, Mouton JW, Verweij PE, de Hoog GS (2014) Antifungal susceptibility patterns of opportunistic fungi in the genera Verruconis and Ochroconis. Antimicrob Agents Chemother 58:3285–3292PubMedPubMedCentralCrossRefGoogle Scholar
  91. 91.
    Maschmeyer G, Glasmacher A (2005) Pharmacological properties and clinical efficacy of a recently licensed systemic antifungal, caspofungin. Mycoses 48:227–234PubMedCrossRefGoogle Scholar
  92. 92.
    de la Torre P, Reboli AC (2014) Micafungin: an evidence-based review of its place in therapy. Core Evid 9:27–39PubMedPubMedCentralGoogle Scholar
  93. 93.
    Estes KE, Penzak SR, Calis KA, Walsh TJ (2009) Pharmacology and antifungal properties of anidulafungin, a new echinocandin. Pharmacotherapy 29:17–30PubMedCrossRefGoogle Scholar
  94. 94.
    Tassel D, Madoff MA (1968) Treatment of Candida sepsis and Cryptococcus meningitis with 5-fluorocytosine. A new antifungal agent. JAMA 206:830–832PubMedCrossRefGoogle Scholar
  95. 95.
    Heidelberger C, Chaudhuri NK, Danneberg P, Mooren D, Griesbach L, Duschinsky R, Schnitzer RJ, Pleven E, Scheiner J (1957) Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179:663–666PubMedCrossRefGoogle Scholar
  96. 96.
    Polak A, Scholer HJ (1975) Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemotherapy 21:113–130PubMedCrossRefGoogle Scholar
  97. 97.
    Cutler RE, Blair AD, Kelly MR (1978) Flucytosine kinetics in subjects with normal and impaired renal function. Clin Pharmacol Ther 24:333–342PubMedCrossRefGoogle Scholar
  98. 98.
    Polak A (1977) 5-Fluorocytosine—current status with special references to mode of action and drug resistance. Contrib Microbiol Immunol 4:158–167PubMedGoogle Scholar
  99. 99.
    Benson JM, Nahata MC (1988) Clinical use of systemic antifungal agents. Clin Pharm 7:424–438PubMedGoogle Scholar
  100. 100.
    Pfaller MA, Messer SA, Boyken L, Huynh H, Hollis RJ, Diekema DJ (2002) In vitro activities of 5-fluorocytosine against 8,803 clinical isolates of Candida spp.: global assessment of primary resistance using National Committee for Clinical Laboratory Standards susceptibility testing methods. Antimicrob Agents Chemother 46:3518–3521PubMedPubMedCentralCrossRefGoogle Scholar
  101. 101.
    Pfaller MA, Messer SA, Boyken L, Rice C, Tendolkar S, Hollis RJ, Doern GV, Diekema DJ (2005) Global trends in the antifungal susceptibility of Cryptococcus neoformans (1990 to 2004). J Clin Microbiol 43:2163–2167PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Verweij PE, Te Dorsthorst DT, Janssen WH, Meis JF, Mouton JW (2008) In vitro activities at pH 5.0 and pH 7.0 and in vivo efficacy of flucytosine against Aspergillus fumigatus. Antimicrob Agents Chemother 52:4483–4485Google Scholar
  103. 103.
    Shadomy S (1969) In vitro studies with 5-fluorocytosine. Appl Microbiol 17:871–877PubMedPubMedCentralGoogle Scholar
  104. 104.
    Pappas PG, Rex JH, Sobel JD, Filler SG, Dismukes WE, Walsh TJ, Edwards JE, Infectious Diseases Society of America (2004) Guidelines for treatment of candidiasis. Clin Infect Dis 38:161–189PubMedCrossRefGoogle Scholar
  105. 105.
    Hospenthal DR, Bennett JE (1998) Flucytosine monotherapy for cryptococcosis. Clin Infect Dis 27:260–264PubMedCrossRefGoogle Scholar
  106. 106.
    Andes D, Pascual A, Marchetti O (2009) Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrob Agents Chemother 53:24–34PubMedCrossRefGoogle Scholar
  107. 107.
    (AFST-EUCAST) (2008) EUCAST Technical Note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia-forming moulds. Clin Microbiol Infect 14:982–984CrossRefGoogle Scholar
  108. 108.
    CLSI (2008) Reference method for broth dilution antifungal susceptibilitytesting of filamentous fungi; approved standard-second edition. CLSI Document. M38-A2., vol 28 no.16. Clinical and Laboratory Standards Institute, Wane, PAGoogle Scholar
  109. 109.
    Kanafani ZA, Perfect JR (2008) Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis 46:120–128PubMedCrossRefGoogle Scholar
  110. 110.
    Arendrup MC (2014) Update on antifungal resistance in Aspergillus and Candida. Clin Microbiol Infect 20 (Suppl 6):42–48PubMedCrossRefGoogle Scholar
  111. 111.
    Cuenca-Estrella M (2014) Antifungal drug resistance mechanisms in pathogenic fungi: from bench to bedside. Clin Microbiol Infect 20(Suppl 6):54–59PubMedCrossRefGoogle Scholar
  112. 112.
    Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS (2014) Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med 10:5(7): a019752Google Scholar
  113. 113.
    Pfaller MA (2012) Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med 125:S3–S13PubMedCrossRefGoogle Scholar
  114. 114.
    Verweij PE, Mellado E, Melchers WJ (2007) Multiple-triazole-resistant aspergillosis. N Engl J Med 356:1481–1483PubMedCrossRefGoogle Scholar
  115. 115.
    Lewis RE (2011) Current concepts in antifungal pharmacology. Mayo Clin Proc 86:805–817PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Seyedmousavi S, Mouton JW, Verweij PE, Bruggeman RJM (2013) Therapeutic drug monitoring of voriconazole and posaconazole for invasive aspergillosis. Expert Rev Anti-Infect Ther 11(9): 931–41Google Scholar
  117. 117.
    Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH (2010) An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 9:719–727PubMedCrossRefGoogle Scholar
  118. 118.
    Roemer T, Krysan DJ (2014) Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 1; 4(5)Google Scholar
  119. 119.
    Rex JH, Walsh TJ, Nettleman M, Anaissie EJ, Bennett JE, Bow EJ, Carillo-Munoz AJ, Chavanet P, Cloud GA, Denning DW, de Pauw BE, Edwards JE Jr, Hiemenz JW, Kauffman CA, Lopez-Berestein G, Martino P, Sobel JD, Stevens DA, Sylvester R, Tollemar J, Viscoli C, Viviani MA, Wu T (2001) Need for alternative trial designs and evaluation strategies for therapeutic studies of invasive mycoses. Clin Infect Dis 33:95–106PubMedCrossRefGoogle Scholar
  120. 120.
    Vandeputte P, Ferrari S, Coste AT (2012) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:713687PubMedCrossRefGoogle Scholar
  121. 121.
    Jung SH, Lim DH, Jung SH, Lee JE, Jeong KS, Seong H, Shin BC (2009) Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci 37:313–320Google Scholar
  122. 122.
    Serrano DR, Lalatsa A, Dea-Ayuela MA, Bilbao-Ramos PE, Garrett NL, Moger J, Guarro J, Capilla J, Ballesteros MP, Schatzlein AG, Bolas F, Torrado JJ, Uchegbu IF (2015) Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles. Mol Pharm 12:420–431PubMedCrossRefGoogle Scholar
  123. 123.
    Perfect JR, Dodds Ashley E, Drew R (2004) Design of aerosolized amphotericin b formulations for prophylaxis trials among lung transplant recipients. Clin Infect Dis 39(Suppl 4):S207–S210PubMedCrossRefGoogle Scholar
  124. 124.
    Jung H, Kim HM, Choy YB, Hwang SJ, Choy JH (2008) Laponite-based nanohybrid for enhanced solubility and controlled release of itraconazole. Int J Pharm 349:283–290PubMedCrossRefGoogle Scholar
  125. 125.
    Guillon R, Pagniez F, Picot C, Hedou D, Tonnerre A, Chosson E, Duflos M, Besson T, Loge C, Le Pape P (2013) Discovery of a novel broad-spectrum antifungal agent derived from albaconazole. ACS Med Chem Lett 4:288–292PubMedPubMedCentralCrossRefGoogle Scholar
  126. 126.
    Bartroli J, Turmo E, Alguero M, Boncompte E, Vericat ML, Conte L, Ramis J, Merlos M, Garcia-Rafanell J, Forn J (1998) New azole antifungals. 3. Synthesis and antifungal activity of 3-substituted-4(3H)-quinazolinones. J Med Chem 41:1869–1882PubMedCrossRefGoogle Scholar
  127. 127.
    Miller JL, Schell WA, Wills EA, Toffaletti DL, Boyce M, Benjamin DK Jr, Bartroli J, Perfect JR (2004) In vitro and in vivo efficacies of the new triazole albaconazole against Cryptococcus neoformans. Antimicrob Agents Chemother 48:384–387Google Scholar
  128. 128.
    Espinel-Ingroff A (2001) In vitro fungicidal activities of voriconazole, itraconazole, and amphotericin B against opportunistic moniliaceous and dematiaceous fungi. J Clin Microbiol 39:954–958PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Ramos G, Cuenca-Estrella M, Monzon A, Rodriguez-Tudela JL (1999) In vitro comparative activity of UR-9825, itraconazole and fluconazole against clinical isolates of Candida spp. J Antimicrob Chemother 44:283–286Google Scholar
  130. 130.
    Bartroli X, Uriach J (2005) A clinical multicenter study comparing efficacy and tolerability between five single oral doses of albaconazole and fluconazole 150 mg single dose in acute vulvovaginal candidiasis 45th Interscience Conference on Antimicrobial Agents and Chemotherapy: Abs M-722Google Scholar
  131. 131.
    Turel O (2011) Newer antifungal agents. Expert Rev Anti Infect Ther 9:325–338PubMedCrossRefGoogle Scholar
  132. 132.
    Lamoth F, Alexander BD (2015) Antifungal activities of SCY-078 (MK-3118) and standard antifungal agents against clinical non-Aspergillus mould isolates. Antimicrob Agents Chemother 59:4308–4311Google Scholar
  133. 133.
    Pfaller MA, Messer SA, Motyl MR, Jones RN, Castanheira M (2013) Activity of MK-3118, a new oral glucan synthase inhibitor, tested against Candida spp. by two international methods (CLSI and EUCAST). J Antimicrob Chemother 68:858–863PubMedCrossRefGoogle Scholar
  134. 134.
    Walker SS, Xu Y, Triantafyllou I, Waldman MF, Mendrick C, Brown N, Mann P, Chau A, Patel R, Bauman N, Norris C, Antonacci B, Gurnani M, Cacciapuoti A, McNicholas PM, Wainhaus S, Herr RJ, Kuang R, Aslanian RG, Ting PC, Black TA (2011) Discovery of a novel class of orally active antifungal beta-1,3-D-glucan synthase inhibitors. Antimicrob Agents Chemother 55:5099–5106PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Lepak AJ, Marchillo K, Andes DR (2015) Pharmacodynamic target evaluation of a novel oral glucan synthase inhibitor, SCY-078 (MK-3118), using anin vivo murine invasive candidiasis model. Antimicrob Agents Chemother 59:1265–1272Google Scholar
  136. 136.
    Pfaller MA, Messer SA, Motyl MR, Jones RN, Castanheira M (2013) In vitro activity of a new oral glucan synthase inhibitor (MK-3118) tested against Aspergillus spp. by CLSI and EUCAST broth microdilution methods. Antimicrob Agents Chemother 57:1065–1068Google Scholar
  137. 137.
    James K, Krishnan R, Smith S, Laudeman C, Polowy K, Vaidya A (2014) Biafungin (SP 3025), a novel echinocandin, displays a long half-life in the chimpanzee, suggesting a once-weekly IV dosing option. 54th Interscience Conference on Antimicrobial Agents andChemotherapy: Abs A-694Google Scholar
  138. 138.
    Castanheira M, Messer SA, Rhomberg PR, Jones RN, Pfaller MA (2014) Activity of a novel echinocandin biafungin (CD101) tested against most common Candida and Aspergillus species, including echinocandin- and azole-resistant strains, 54th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Washington, DC, September 5–9Google Scholar
  139. 139.
    Munro CA, Gow NA (2001) Chitin synthesis in human pathogenic fungi. Med Mycol 39 (Suppl 1):41–53PubMedCrossRefGoogle Scholar
  140. 140.
    Chaudhary PM, Tupe SG, Deshpande MV (2013) Chitin synthase inhibitors as antifungal agents. Mini Rev Med Chem 13:222–236PubMedGoogle Scholar
  141. 141.
    Uda J, Obi K, Iwase K, Sugimoto O, Ebisu H, Matsuda A (1999) Synthesis and structure-activity relationships of novel nikkomycin analogs: inhibitors of the fungal cell wall biosynthesis enzyme chitin synthase. Nucleic Acids Symp Ser 13–14Google Scholar
  142. 142.
    Gaughran JP, Lai MH, Kirsch DR, Silverman SJ (1994) Nikkomycin Z is a specific inhibitor of Saccharomyces cerevisiae chitin synthase isozyme Chs3 in vitro and in vivo. J Bacteriol 176:5857–5860Google Scholar
  143. 143.
    Cabib E (1991) Differential inhibition of chitin synthetases 1 and 2 from Saccharomyces cerevisiae by polyoxin D and nikkomycins. Antimicrob Agents Chemother 35:170–173PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Hector RF, Zimmer BL, Pappagianis D (1990) Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob Agents Chemother 34:587–593PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Clemons KV, Stevens DA (1997) Efficacy of nikkomycin Z against experimental pulmonary blastomycosis. Antimicrob Agents Chemother 41:2026–2028PubMedPubMedCentralGoogle Scholar
  146. 146.
    Stevens DA (2000) Drug interaction studies of a glucan synthase inhibitor (LY 303366) and a chitin synthase inhibitor (Nikkomycin Z) for inhibition and killing of fungal pathogens. Antimicrob Agents Chemother 44:2547–2548PubMedPubMedCentralCrossRefGoogle Scholar
  147. 147.
    Chiou CC, Mavrogiorgos N, Tillem E, Hector R, Walsh TJ (2001) Synergy, pharmacodynamics, and time-sequenced ultrastructural changes of the interaction between nikkomycin Z and the echinocandin FK463 against Aspergillus fumigatus. Antimicrob Agents Chemother 45:3310–3321PubMedPubMedCentralCrossRefGoogle Scholar
  148. 148.
    Stevens DA, Calderon L, Martinez M, Clemons KV, Wilson SJ, Selitrennikoff CP (2002) Zeamatin, clotrimazole and nikkomycin Z in therapy of a Candida vaginitis model. J Antimicrob Chemother 50:361–364Google Scholar
  149. 149.
    Ganesan LT, Manavathu EK, Cutright JL, Alangaden GJ, Chandrasekar PH (2004) In vitro activity of nikkomycin Z alone and in combination with polyenes, triazoles or echinocandins against Aspergillus fumigatus. Clin Microbiol Infect 10:961–966Google Scholar
  150. 150.
    Nix DE, Swezey RR, Hector R, Galgiani JN (2009) Pharmacokinetics of nikkomycin Z after single rising oral doses. Antimicrob Agents Chemother 53:2517–2521PubMedPubMedCentralCrossRefGoogle Scholar
  151. 151.
    Justice MC, Ku T, Hsu MJ, Carniol K, Schmatz D, Nielsen J (1999) Mutations in ribosomal protein L10e confer resistance to the fungal-specific eukaryotic elongation factor 2 inhibitor sordarin. J Biol Chem 274:4869–4875PubMedCrossRefGoogle Scholar
  152. 152.
    Dominguez JM, Kelly VA, Kinsman OS, Marriott MS, Gomez de las Heras F, Martin JJ (1998) Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob Agents Chemother 42:2274–2278PubMedPubMedCentralGoogle Scholar
  153. 153.
    Liang H (2008) Sordarin, an antifungal agent with a unique mode of action. Beilstein J Org Chem 4:31PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Capa L, Mendoza A, Lavandera JL, Gomez de las Heras F, Garcia-Bustos JF (1998) Translation elongation factor 2 is part of the target for a new family of antifungals. Antimicrob Agents Chemother 42:2694–2699PubMedPubMedCentralGoogle Scholar
  155. 155.
    Martinez A, Aviles P, Jimenez E, Caballero J, Gargallo-Viola D (2000) Activities of sordarins in experimental models of candidiasis, aspergillosis, and pneumocystosis. Antimicrob Agents Chemother 44:3389–3394PubMedPubMedCentralCrossRefGoogle Scholar
  156. 156.
    Herreros E, Martinez CM, Almela MJ, Marriott MS, De Las Heras FG, Gargallo-Viola D (1998) Sordarins: in vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi. Antimicrob Agents Chemother 42:2863–2869Google Scholar
  157. 157.
    Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279PubMedCrossRefGoogle Scholar
  158. 158.
    Kamai Y, Kakuta M, Shibayama T, Fukuoka T, Kuwahara S (2005) Antifungal activities of R-135853, a sordarin derivative, in experimental candidiasis in mice. Antimicrob Agents Chemother 49:52–56PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Hanadate T, Tomishima M, Shiraishi N, Tanabe D, Morikawa H, Barrett D, Matsumoto S, Ohtomo K, Maki K (2009) FR290581, a novel sordarin derivative: synthesis and antifungal activity. Bioorg Med Chem Lett 19:1465–1468PubMedCrossRefGoogle Scholar
  160. 160.
    Hoekstra WJ, Garvey EP, Moore WR, Rafferty SW, Yates CM, Schotzinger RJ (2014) Design and optimization of highly-selective fungal CYP51 inhibitors. Bioorg Med Chem Lett 24:3455–3458PubMedCrossRefGoogle Scholar
  161. 161.
    Fothergill AW, McCarthy DI, Sutton DA, Garvey EP, Hoekstra WJ, Moore WR, Schotzinger RJ, Wiederhold NP. The fungal Cyp51 inhibitor VT-1161 demonstrates in vitro synergy with tacrolimus against Aspergillus spp. and members of the order Mucorales, Abstr 54th Intersci Conf Antimicrob Agents Chemother. American Society for Microbiology Washington, DCGoogle Scholar
  162. 162.
    Gebremariam T, Wiederhold NP, Fothergill AW, Garvey EP, Hoekstra WJ, Schotzinger RJ, Patterson TF, Filler SG, Ibrahim AS (2015) VT-1161 Protects immunosuppressed mice from Rhizopus arrhizus var. arrhizus infection. Antimicrob Agents Chemother 59(12):7815–7817 10.1128/AAC.01437-15
  163. 163.
    Shubitz LF, Trinh HT, Galgiani JN, Lewis ML, Garvey EP, Hoekstra WJ, Moore WR, Schotzinger RJ. CT-1161, a novel fungal CYP51 inhibitor, improved survival in murine models of coccidioidomycosis, p M-433. Abstr 54th Intersci Conf Antimicrob Agents Chemother American Society for Microbiology, Washington, DCGoogle Scholar
  164. 164.
    Garvey EP, Hoekstra WJ, Moore WR, Schotzinger RJ, Long L, Ghannoum MA (2015) VT-1161 dosed once daily or once weekly exhibits potent efficacy in treatment of dermatophytosis in a guinea pig model. Antimicrob Agents Chemother 59:1992–1997PubMedPubMedCentralCrossRefGoogle Scholar
  165. 165.
    Najvar N, Wiederhold NP, Alimardanov A, Cradock J, Xu X, Behnke M, Ottinger EA, Hoekstra WJ, Garvey EP, Brand SR, Schotzinger RJ, Moore WR, Bocanegra R, Kirkpatrick WR, Patterson TF (2014) The novel fungal Cyp51 inhibitor VT-1129 demonstrates potent in vivo activity against cryptococcal meningitis with an improved formulation, Abstr 54th Intersci Conf Antimicrob Agents Chemother American Society for Microbiology, Washington, DCGoogle Scholar
  166. 166.
    Oliver J, Law D, Sibley G, Kennedy A, Birch M (2015) F901318, a novel antifungal agent from the orotomide class: discovery and mechanism of action, Abstr 55th Intersci Conf Antimicrob Agents Chemother American Society for Microbiology, San Diego, CAGoogle Scholar
  167. 167.
    Law D, Oliver J, Warn P, Kennedy A, Sibley G, Birch M. In vivo efficacy of orally dosed F901318, in a murine model of disseminated aspergillosis, Abstr 55th Intersci Conf Antimicrob Agents Chemother American Society for Microbiology, San Diego, CAGoogle Scholar
  168. 168.
    Wiederhold NP, Najvar LK, Matsumoto S, Bocanegra RA, Herrera ML, Wickes BL, Kirkpatrick WR, Patterson TF (2015) Efficacy of the investigational echinocandin ASP9726 in a guinea pig model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 59:2875–2881PubMedPubMedCentralCrossRefGoogle Scholar
  169. 169.
    Morikawa H, Tomishima M, Kayakiri N, Araki T, Barrett D, Akamatsu S, Matsumoto S, Uchida S, Nakai T, Takeda S, Maki K (2014) Synthesis and antifungal activity of ASP9726, a novel echinocandin with potent Aspergillus hyphal growth inhibition. Bioorg Med Chem Lett 24:1172–1175PubMedCrossRefGoogle Scholar
  170. 170.
    Wiederhold NP, Najvar LK, Fothergill AW, Bocanegra R, Olivo M, McCarthy DI, Kirkpatrick WR, Fukuda Y, Mitsuyama J, Patterson TF (2015) The novel arylamidine T-2307 maintains in vitro and in vivo activity against echinocandin-resistant Candida albicans. Antimicrob Agents Chemother 59:1341–1343Google Scholar
  171. 171.
    Shibata T, Takahashi T, Yamada E, Kimura A, Nishikawa H, Hayakawa H, Nomura N, Mitsuyama J (2012) T-2307 causes collapse of mitochondrial membrane potential in yeast. Antimicrob Agents Chemother 56:5892–5897PubMedPubMedCentralCrossRefGoogle Scholar
  172. 172.
    Mitsuyama J, Nomura N, Hashimoto K, Yamada E, Nishikawa H, Kaeriyama M, Kimura A, Todo Y, Narita H (2008) In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob Agents Chemother 52:1318–1324Google Scholar
  173. 173.
    Deng S, Pan W, Liao W, de Hoog GS, Gerrits van den Ende AH, Vitale RG, Rafati H, Ilkit M, Van der Lee AH, Rijs AJ, Verweij PE, Seyedmousavi S (2016) Combination of Amphotericin B and Flucytosine against Neurotropic Species of Melanized Fungi Causing Primary Cerebral Phaeohyphomycosis. Antimicrob Agents Chemother 60:2346–2351Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Seyedmojtaba Seyedmousavi
    • 1
    • 2
    Email author
  • Haleh Rafati
    • 3
  • Macit Ilkit
    • 4
  • Ali Tolooe
    • 5
  • Mohammad T. Hedayati
    • 6
  • Paul Verweij
    • 1
  1. 1.Department of Medical MicrobiologyRadboud University Medical CenterNijmegenThe Netherlands
  2. 2.Invasive Fungi Research Center (IFRC) & Department of Medical Mycology and ParasitologySchool of Medicine, Mazandaran University of Medical SciencesSariIran
  3. 3.Department of BiochemistryErasmus University Medical CenterRotterdamThe Netherlands
  4. 4.Division of Mycology, Department of Microbiology, Faculty of MedicineUniversity of ÇukurovaAdanaTurkey
  5. 5.Department of Medical Mycology and Parasitology, School of Medicine, Invasive Fungi Research Center (IFRC)Mazandaran University of Medical SciencesSariIran
  6. 6.Faculty of Veterinary MedicineUniversity of TehranTehranIran

Personalised recommendations