Skip to main content

Systemic Antifungal Agents: Current Status and Projected Future Developments

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1508))

Abstract

By definition, an antifungal agent is a drug that selectively destroys fungal pathogens with minimal side effects to the host. Despite an increase in the prevalence of fungal infections particularly in immunocompromised patients, only a few classes of antifungal drugs are available for therapy, and they exhibit limited efficacy in the treatment of life-threatening infections. These drugs include polyenes, azoles, echinocandins, and nucleoside analogs. This chapter focuses on the currently available classes and representatives of systemic antifungal drugs in clinical use. We further discuss the unmet clinical needs in the antifungal research field; efforts in reformulation of available drugs such as Amphotericin B nanoparticles for oral drug delivery; development of new agents of known antifungal drug classes, such as albaconazole, SCY-078, and biafungin; and new drugs with novel targets for treatment of invasive fungal infections, including nikkomycin Z, sordarin derivatives, VT-1161 and VT-1129, F901318, VL-2397, and T-2307.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Kohler JR, Casadevall A, Perfect J (2015) The spectrum of fungi that infects humans. Cold Spring Harb Perspect Med 5:a019273

    Article  Google Scholar 

  2. Procop GW (2010) Molecular diagnostics for invasive fungal infections: a call for refinement and implementation. J Mol Diagn 12:17–19

    Article  PubMed  PubMed Central  Google Scholar 

  3. Oren I, Paul M (2014) Up to date epidemiology, diagnosis and management of invasive fungal infections. Clin Microbiol Infect 20(Suppl 6):1–4

    Article  PubMed  Google Scholar 

  4. Pfaller MA, Pappas PG, Wingard JR (2006) Invasive fungal pathogens: current epidemiological trends. Clin Infect Dis 43:S3–S14

    Article  CAS  Google Scholar 

  5. Slavin M, van Hal S, Sorrell TC, Lee A, Marriott DJ, Daveson K, Kennedy K, Hajkowicz K, Halliday C, Athan E, Bak N, Cheong E, Heath CH, Orla Morrissey C, Kidd S, Beresford R, Blyth C, Korman TM, Owen Robinson J, Meyer W, Chen SC, Australia, New Zealand Mycoses Interest Groups (2015) Invasive infections due to filamentous fungi other than Aspergillus: epidemiology and determinants of mortality. Clin Microbiol Infect 21:490 e491–490 e410

    Article  Google Scholar 

  6. Brown GD, Denning DW, Gow NA, Levitz SM, Netea MG, White TC (2012) Hidden killers: human fungal infections. Sci Transl Med 4:165rv113

    Article  CAS  Google Scholar 

  7. Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36:1–53

    Article  PubMed  Google Scholar 

  8. Slavin M, van Hal S, Sorrell TC, Lee A, Marriott DJ, Daveson K, Kennedy K, Hajkowicz K, Halliday C, Athan E, Bak N, Cheong E, Heath CH, Orla Morrissey C, Kidd S, Beresford R, Blyth C, Korman TM, Owen Robinson J, Meyer W, Chen SC (2015) Invasive infections due to filamentous fungi other than Aspergillus: epidemiology and determinants of mortality. Clin Microbiol Infect 21:490.e491–490.e410

    Article  Google Scholar 

  9. Lai CC, Tan CK, Huang YT, Shao PL, Hsueh PR (2008) Current challenges in the management of invasive fungal infections. J Infect Chemother 14:77–85

    Article  CAS  PubMed  Google Scholar 

  10. Richardson MD (2005) Changing patterns and trends in systemic fungal infections. J Antimicrob Chemother 56(Suppl 1):i5–i11

    Article  CAS  PubMed  Google Scholar 

  11. Calderone R, Sun N, Gay-Andrieu F, Groutas W, Weerawarna P, Prasad S, Alex D, Li D (2014) Antifungal drug discovery: the process and outcomes. Future Microbiol 9:791–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maertens J, Marchetti O, Herbrecht R, Cornely OA, Fluckiger U, Frere P, Gachot B, Heinz WJ, Lass-Florl C, Ribaud P, Thiebaut A, Cordonnier C, Third European Conference on Infections in Leukemia (2011) European guidelines for antifungal management in leukemia and hematopoietic stem cell transplant recipients: summary of the ECIL 3–2009 update. Bone Marrow Transplant 46:709–718

    Article  CAS  PubMed  Google Scholar 

  13. Walsh TJ, Anaissie EJ, Denning DW, Herbrecht R, Kontoyiannis DP, Marr KA, Morrison VA, Segal BH, Steinbach WJ, Stevens DA, van Burik JA, Wingard JR, Patterson TF, Infectious Diseases Society of America (2008) Treatment of aspergillosis: clinical practice guidelines of the Infectious Diseases Society of America. Clin Infect Dis 46:327–360

    Article  CAS  PubMed  Google Scholar 

  14. Kathiravan MK, Salake AB, Chothe AS, Dudhe PB, Watode RP, Mukta MS, Gadhwe S (2012) The biology and chemistry of antifungal agents: a review. Bioorg Med Chem 20:5678–5698

    Article  CAS  PubMed  Google Scholar 

  15. Groll AH, Piscitelli SC, Walsh TJ (1998) Clinical pharmacology of systemic antifungal agents: a comprehensive review of agents in clinical use, current investigational compounds, and putative targets for antifungal drug development. Adv Pharmacol 44:343–500

    Article  CAS  PubMed  Google Scholar 

  16. Dodds Ashley ES, Lewis R, Lewis JS, Martin C, Andes D (2006) Pharmacology of systemic antifungal agents. Clin Infect Dis 43:S28–S39

    Article  CAS  Google Scholar 

  17. Gupta AK, Cooper EA (2008) Update in antifungal therapy of dermatophytosis. Mycopathologia 166:353–367

    Article  PubMed  Google Scholar 

  18. Sugiura K, Sugimoto N, Hosaka S, Katafuchi-Nagashima M, Arakawa Y, Tatsumi Y, Jo Siu W, Pillai R (2014) The low keratin affinity of efinaconazole contributes to its nail penetration and fungicidal activity in topical onychomycosis treatment. Antimicrob Agents Chemother 58:3837–3842

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Trommer H, Neubert RH (2006) Overcoming the stratum corneum: the modulation of skin penetration. A review. Skin Pharmacol Physiol 19:106–121

    Article  CAS  PubMed  Google Scholar 

  20. Gray KC, Palacios DS, Dailey I, Endo MM, Uno BE, Wilcock BC, Burke MD (2012) Amphotericin primarily kills yeast by simply binding ergosterol. Proc Natl Acad Sci U S A 109:2234–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. de Kruijff B, Gerritsen WJ, Oerlemans A, Demel RA, van Deenen LL (1974) Polyene antibiotic-sterol interactions in membranes of Acholeplasma laidlawii cells and lecithin liposomes. I. Specificity of the membrane permeability changes induced by the polyene antibiotics. Biochim Biophys Acta 339:30–43

    Article  PubMed  Google Scholar 

  22. Bolard J (1986) How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim Biophys Acta 864:257–304

    Article  CAS  PubMed  Google Scholar 

  23. Dutcher JD (1968) The discovery and development of amphotericin B. Dis Chest 54(Suppl 1):296–298

    Article  Google Scholar 

  24. Gallis HA, Drew RH, Pickard WW (1990) Amphotericin B: 30 years of clinical experience. Rev Infect Dis 12:308–329

    Article  CAS  PubMed  Google Scholar 

  25. Hamill RJ (2013) Amphotericin B formulations: a comparative review of efficacy and toxicity. Drugs 73:919–934

    Article  CAS  PubMed  Google Scholar 

  26. Ostrosky-Zeichner L, Marr KA, Rex JH, Cohen SH (2003) Amphotericin B: time for a new “gold standard”. Clin Infect Dis 37:415–425

    Article  CAS  PubMed  Google Scholar 

  27. Barchiesi F, Colombo AL, McGough DA, Rinaldi MG (1994) Comparative study of broth macrodilution and microdilution techniques for in vitro antifungal susceptibility testing of yeasts by using the National Committee for Clinical Laboratory Standards’ proposed standard. J Clin Microbiol 32:2494–2500

    Google Scholar 

  28. Pfaller MA, Diekema DJ, Messer SA, Boyken L, Hollis RJ, Jones RN (2004) In vitro susceptibilities of rare Candida bloodstream isolates to ravuconazole and three comparative antifungal agents. Diagn Microbiol Infect Dis 48:101–105

    Google Scholar 

  29. Ostrosky-Zeichner L, Rex JH, Pappas PG, Hamill RJ, Larsen RA, Horowitz HW, Powderly WG, Hyslop N, Kauffman CA, Cleary J, Mangino JE, Lee J (2003) Antifungal susceptibility survey of 2,000 bloodstream Candida isolates in the United States. Antimicrob Agents Chemother 47:3149–3154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hadfield TL, Smith MB, Winn RE, Rinaldi MG, Guerra C (1987) Mycoses caused by Candida lusitaniae. Rev Infect Dis 9:1006–1012

    Article  CAS  PubMed  Google Scholar 

  31. Walsh TJ, Melcher GP, Rinaldi MG, Lecciones J, McGough DA, Kelly P, Lee J, Callender D, Rubin M, Pizzo PA (1990) Trichosporon beigelii, an emerging pathogen resistant to amphotericin B. J Clin Microbiol 28:1616–1622

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Sutton DA, Sanche SE, Revankar SG, Fothergill AW, Rinaldi MG (1999) In vitro amphotericin B resistance in clinical isolates of Aspergillus terreus, with a head-to-head comparison to voriconazole. J Clin Microbiol 37:2343–2345

    Google Scholar 

  33. Eng RH, Person A, Mangura C, Chmel H, Corrado M (1981) Susceptibility of zygomycetes to amphotericin B, miconazole, and ketoconazole. Antimicrob Agents Chemother 20:688–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Collins MS, Pappagianis D (1977) Uniform susceptibility of various strains of Coccidioides immitis to amphotericin B. Antimicrob Agents Chemother 11:1049–1055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Day JN, Chau TT, Lalloo DG (2013) Combination antifungal therapy for cryptococcal meningitis. N Engl J Med 368:2522–2523

    Article  CAS  PubMed  Google Scholar 

  36. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, Harrison TS, Larsen RA, Lortholary O, Nguyen MH, Pappas PG, Powderly WG, Singh N, Sobel JD, Sorrell TC (2010) Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of America. Clin Infect Dis 50:291–322

    Article  PubMed  Google Scholar 

  37. Hazen EL, Brown R (1951) Fungicidin, an antibiotic produced by a soil actinomycete. Proc Soc Exp Biol Med 76:93–97

    Article  CAS  PubMed  Google Scholar 

  38. Hofstra W, de Vries-Hospers HG, van der Waaij D (1979) Concentrations of nystatin in faeces after oral administration of various doses of nystatin. Infection 7:166–170

    Article  CAS  PubMed  Google Scholar 

  39. Semis R, Nili SS, Munitz A, Zaslavsky Z, Polacheck I, Segal E (2012) Pharmacokinetics, tissue distribution and immunomodulatory effect of intralipid formulation of nystatin in mice. J Antimicrob Chemother 67:1716–1721

    Article  CAS  PubMed  Google Scholar 

  40. Oakley KL, Moore CB, Denning DW (1999) Comparison of in vitro activity of liposomal nystatin against Aspergillus species with those of nystatin, amphotericin B (AB) deoxycholate, AB colloidal dispersion, liposomal AB, AB lipid complex, and itraconazole. Antimicrob Agents Chemother 43:1264–1266

    Google Scholar 

  41. Arikan S (2002) Lipid-based antifungal agents: a concise overview. Cell Mol Biol Lett 7:919–922

    CAS  PubMed  Google Scholar 

  42. Bergan T, Vangdal M (1983) In vitro activity of antifungal agents against yeast species. Chemotherapy 29:104–110

    Article  CAS  PubMed  Google Scholar 

  43. Hussain Qadri SM, Flournoy DJ, Qadri SG, Ramirez EG (1986) Susceptibility of clinical isolates of yeasts to anti-fungal agents. Mycopathologia 95:183–187

    Article  CAS  PubMed  Google Scholar 

  44. Rezabek GH, Friedman AD (1992) Superficial fungal infections of the skin. Diagnosis and current treatment recommendations. Drugs 43:674–682

    Article  CAS  PubMed  Google Scholar 

  45. Pappas PG, Kauffman CA, Andes D, Benjamin DK Jr, Calandra TF, Edwards JE Jr, Filler SG, Fisher JF, Kullberg BJ, Ostrosky-Zeichner L, Reboli AC, Rex JH, Walsh TJ, Sobel JD, Infectious Diseases Society of America (2009) Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis 48:503–535

    Article  CAS  PubMed  Google Scholar 

  46. Ullmann AJ, Akova M, Herbrecht R, Viscoli C, Arendrup MC, Arikan-Akdagli S, Bassetti M, Bille J, Calandra T, Castagnola E, Cornely OA, Donnelly JP, Garbino J, Groll AH, Hope WW, Jensen HE, Kullberg BJ, Lass-Florl C, Lortholary O, Meersseman W, Petrikkos G, Richardson MD, Roilides E, Verweij PE, Cuenca-Estrella M, Group EFIS (2012) ESCMID* guideline for the diagnosis and management of Candida diseases 2012: adults with haematological malignancies and after haematopoietic stem cell transplantation (HCT). Clin Microbiol Infect 18(Suppl 7):53–67

    Article  CAS  PubMed  Google Scholar 

  47. Hope WW, Castagnola E, Groll AH, Roilides E, Akova M, Arendrup MC, Arikan-Akdagli S, Bassetti M, Bille J, Cornely OA, Cuenca-Estrella M, Donnelly JP, Garbino J, Herbrecht R, Jensen HE, Kullberg BJ, Lass-Florl C, Lortholary O, Meersseman W, Petrikkos G, Richardson MD, Verweij PE, Viscoli C, Ullmann AJ, Group EFIS (2012) ESCMID* guideline for the diagnosis and management of Candida diseases 2012: prevention and management of invasive infections in neonates and children caused by Candida spp. Clin Microbiol Infect 18(Suppl 7):38–52

    Google Scholar 

  48. Maertens JA (2004) History of the development of azole derivatives. Clin Microbiol Infect 10(Suppl 1):1–10

    Article  CAS  PubMed  Google Scholar 

  49. Lass-Florl C (2011) Triazole antifungal agents in invasive fungal infections: a comparative review. Drugs 71:2405–2419

    Article  PubMed  Google Scholar 

  50. Groll AH, Gea-Banacloche JC, Glasmacher A, Just-Nuebling G, Maschmeyer G, Walsh TJ (2003) Clinical pharmacology of antifungal compounds. Infect Dis Clin North Am 17(159-191):ix

    Google Scholar 

  51. Mohr J, Johnson M, Cooper T, Lewis JS, Ostrosky-Zeichner L (2008) Current options in antifungal pharmacotherapy. Pharmacotherapy 28:614–645

    Article  CAS  PubMed  Google Scholar 

  52. Gupta AK, Lyons DC (2015) The rise and fall of oral ketoconazole. J Cutan Med Surg 19:352–357

    Article  CAS  PubMed  Google Scholar 

  53. EMA (2012) European public assessment report (EPAR) for Noxafil, 06/09/2012 ed doi: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_-_Summary_for_the_public/human/000610/WC500037785.pdf. European Medicines Agency

  54. EMA (2012) European public assessment report (EPAR) for Vfend, 04/12/2012 ed doi:http://www.emea.europa.eu/docs/en_GB/document_library/EPAR_-_Summary_for_the_public/human/000387/WC500049751.pdf. European Medicines Agency

  55. Warrilow AG, Martel CM, Parker JE, Melo N, Lamb DC, Nes WD, Kelly DE, Kelly SL (2010) Azole binding properties of Candida albicans sterol 14-alpha demethylase (CaCYP51). Antimicrob Agents Chemother 54:4235–4245

    Google Scholar 

  56. EMA (2012) European public assessment report (EPAR) for Diflucan, 02/02/2012 ed doi:http://www.ema.europa.eu/ema/index.jsp?curl=pages/medicines/human/referrals/Diflucan/human_referral_000278.jsp&mid=WC0b01ac05805c516f. European Medicines Agency

  57. Sun HY, Singh N (2011) Mucormycosis: its contemporary face and management strategies. Lancet Infect Dis 11:301–311

    Article  PubMed  Google Scholar 

  58. Lewis RE, Liao G, Wang W, Prince RA, Kontoyiannis DP (2011) Voriconazole pre-exposure selects for breakthrough mucormycosis in a mixed model of Aspergillus fumigatus-Rhizopus oryzae pulmonary infection. Virulence 2:348–355

    Article  PubMed  Google Scholar 

  59. Manavathu EK, Cutright JL, Loebenberg D, Chandrasekar PH (2000) A comparative study of the in vitro susceptibilities of clinical and laboratory-selected resistant isolates of Aspergillus spp. to amphotericin B, itraconazole, voriconazole and posaconazole (SCH 56592). J Antimicrob Chemother 46:229–234

    Google Scholar 

  60. Herbrecht R, Denning DW, Patterson TF, Bennett JE, Greene RE, Oestmann JW, Kern WV, Marr KA, Ribaud P, Lortholary O, Sylvester R, Rubin RH, Wingard JR, Stark P, Durand C, Caillot D, Thiel E, Chandrasekar PH, Hodges MR, Schlamm HT, Troke PF, de Pauw B (2002) Voriconazole versus amphotericin B for primary therapy of invasive aspergillosis. N Engl J Med 347:408–415

    Article  CAS  PubMed  Google Scholar 

  61. Cornely OA, Maertens J, Winston DJ, Perfect J, Ullmann AJ, Walsh TJ, Helfgott D, Holowiecki J, Stockelberg D, Goh YT, Petrini M, Hardalo C, Suresh R, Angulo-Gonzalez D (2007) Posaconazole vs. fluconazole or itraconazole prophylaxis in patients with neutropenia. N Engl J Med 356:348–359

    Article  CAS  PubMed  Google Scholar 

  62. Ullmann AJ, Lipton JH, Vesole DH, Chandrasekar P, Langston A, Tarantolo SR, Greinix H, Morais de Azevedo W, Reddy V, Boparai N, Pedicone L, Patino H, Durrant S (2007) Posaconazole or fluconazole for prophylaxis in severe graft-versus-host disease. N Engl J Med 356:335–347

    Article  CAS  PubMed  Google Scholar 

  63. Pasqualotto AC, Denning DW (2008) New and emerging treatments for fungal infections. J Antimicrob Chemother 61(Suppl 1):i19–i30

    Article  CAS  PubMed  Google Scholar 

  64. Thompson GR 3rd, Wiederhold NP (2010) Isavuconazole: a comprehensive review of spectrum of activity of a new triazole. Mycopathologia 170:291–313

    Article  CAS  PubMed  Google Scholar 

  65. Falci DR, Pasqualotto AC (2013) Profile of isavuconazole and its potential in the treatment of severe invasive fungal infections. Infect Drug Resist 6:163–174

    PubMed  PubMed Central  Google Scholar 

  66. Livermore J, Hope W (2012) Evaluation of the pharmacokinetics and clinical utility of isavuconazole for treatment of invasive fungal infections. Expert Opin Drug Metab Toxicol 8:759–765

    Article  CAS  PubMed  Google Scholar 

  67. Ohwada J, Tsukazaki M, Hayase T, Oikawa N, Isshiki Y, Fukuda H, Mizuguchi E, Sakaitani M, Shiratori Y, Yamazaki T, Ichihara S, Umeda I, Shimma N (2003) Design, synthesis and antifungal activity of a novel water soluble prodrug of antifungal triazole. Bioorg Med Chem Lett 13:191–196

    Article  CAS  PubMed  Google Scholar 

  68. Schmitt-Hoffmann A, Roos B, Maares J, Heep M, Spickerman J, Weidekamm E, Brown T, Roehrle M (2006) Multiple-dose pharmacokinetics and safety of the new antifungal triazole BAL4815 after intravenous infusion and oral administration of its prodrug, BAL8557, in healthy volunteers. Antimicrob Agents Chemother 50:286–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Schmitt-Hoffmann A, Roos B, Heep M, Schleimer M, Weidekamm E, Brown T, Roehrle M, Beglinger C (2006) Single-ascending-dose pharmacokinetics and safety of the novel broad-spectrum antifungal triazole BAL4815 after intravenous infusions (50, 100, and 200 milligrams) and oral administrations (100, 200, and 400 milligrams) of its prodrug, BAL8557, in healthy volunteers. Antimicrob Agents Chemother 50:279–285

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Odds FC (2006) Drug evaluation: BAL-8557—a novel broad-spectrum triazole antifungal. Curr Opin Investig Drugs 7:766–772

    CAS  PubMed  Google Scholar 

  71. Martin de la Escalera C, Aller AI, Lopez-Oviedo E, Romero A, Martos AI, Canton E, Peman J, Garcia Martos P, Martin-Mazuelos E (2008) Activity of BAL 4815 against filamentous fungi. J Antimicrob Chemother 61:1083–1086

    Article  CAS  PubMed  Google Scholar 

  72. Rudramurthy SM, Chakrabarti A, Geertsen E, Mouton JW, Meis JF (2011) In vitro activity of isavuconazole against 208 Aspergillus flavus isolates in comparison with 7 other antifungal agents: assessment according to the methodology of the European Committee on Antimicrobial Susceptibility Testing. Diagn Microbiol Infect Dis 71:370–377

    Google Scholar 

  73. Shivaprakash MR, Geertsen E, Chakrabarti A, Mouton JW, Meis JF (2011) In vitro susceptibility of 188 clinical and environmental isolates of Aspergillus flavus for the new triazole isavuconazole and seven other antifungal drugs. Mycoses 54:e583–e589

    Article  CAS  PubMed  Google Scholar 

  74. Perkhofer S, Lechner V, Lass-Florl C (2009) In vitro activity of Isavuconazole against Aspergillus species and zygomycetes according to the methodology of the European Committee on Antimicrobial Susceptibility Testing. Antimicrob Agents Chemother 53:1645–1647

    Google Scholar 

  75. Guinea J, Pelaez T, Recio S, Torres-Narbona M, Bouza E (2008) In vitro antifungal activities of isavuconazole (BAL4815), voriconazole, and fluconazole against 1,007 isolates of zygomycete, Candida, Aspergillus, Fusarium, and Scedosporium species. Antimicrob Agents Chemother 52:1396–1400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Warn PA, Sharp A, Denning DW (2006) In vitro activity of a new triazole BAL4815, the active component of BAL8557 (the water-soluble prodrug), against Aspergillus spp. J Antimicrob Chemother 57:135–138

    Google Scholar 

  77. Espinel-Ingroff A, Chowdhary A, Gonzalez GM, Lass-Florl C, Martin-Mazuelos E, Meis J, Pelaez T, Pfaller MA, Turnidge J (2013) Multicenter study of isavuconazole MIC distributions and epidemiological cutoff values for Aspergillus spp. for the CLSI M38-A2 broth microdilution method. Antimicrob Agents Chemother 57:3823–3828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Seyedmousavi S, Rijs AJ, Melchers WJ, Mouton JW, Verweij PE (2013) In vitro activity of isavuconazole compared with itraconazole, voriconazole, and posaconazole in azole-resistant Aspergillus fumigatus Abstract pM-1377. 53rd Interscience Conference on Antimicrobial Agents and Chemotherapy, Denver, Co, USA

    Google Scholar 

  79. Gregson L, Goodwin J, Johnson A, McEntee L, Moore CB, Richardson M, Hope WW, Howard SJ (2013) In vitro susceptibility of Aspergillus fumigatus to isavuconazole: correlation with itraconazole, voriconazole, and posaconazole. Antimicrob Agents Chemother 57:5778–5780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Seyedmousavi S, Verweij PE, Mouton JW (2015) Isavuconazole, a broad-spectrum triazole for the treatment of systemic fungal diseases. Expert Rev Anti Infect Ther 13:9–27

    Article  CAS  PubMed  Google Scholar 

  81. Denning DW (2002) Echinocandins: a new class of antifungal. J Antimicrob Chemother 49:889–891

    Article  CAS  PubMed  Google Scholar 

  82. Mukherjee PK, Sheehan D, Puzniak L, Schlamm H, Ghannoum MA (2011) Echinocandins: are they all the same? J Chemother 23:319–325

    Article  CAS  PubMed  Google Scholar 

  83. Nyfeler R, Keller-Schierlein W (1974) Metabolites of microorganisms. 143. Echinocandin B, a novel polypeptide-antibiotic from Aspergillus nidulans var. echinulatus: isolation and structural components. Helv Chim Acta 57:2459–2477

    Article  CAS  PubMed  Google Scholar 

  84. Kurtz MB, Douglas CM (1997) Lipopeptide inhibitors of fungal glucan synthase. J Med Vet Mycol 35:79–86

    Article  CAS  PubMed  Google Scholar 

  85. Eschenauer G, Depestel DD, Carver PL (2007) Comparison of echinocandin antifungals. Ther Clin Risk Manag 3:71–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Bachmann SP, Patterson TF, Lopez-Ribot JL (2002) In vitro activity of caspofungin (MK-0991) against Candida albicans clinical isolates displaying different mechanisms of azole resistance. J Clin Microbiol 40:2228–2230

    Google Scholar 

  87. Bachmann SP, VandeWalle K, Ramage G, Patterson TF, Wickes BL, Graybill JR, Lopez-Ribot JL (2002) In vitro activity of caspofungin against Candida albicans biofilms. Antimicrob Agents Chemother 46:3591–3596

    Google Scholar 

  88. Bowman JC, Abruzzo GK, Flattery AM, Gill CJ, Hickey EJ, Hsu MJ, Kahn JN, Liberator PA, Misura AS, Pelak BA, Wang TC, Douglas CM (2006) Efficacy of caspofungin against Aspergillus flavus, Aspergillus terreus, and Aspergillus nidulans. Antimicrob Agents Chemother 50:4202–4205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Kohler S, Wheat LJ, Connolly P, Schnizlein-Bick C, Durkin M, Smedema M, Goldberg J, Brizendine E (2000) Comparison of the echinocandin caspofungin with amphotericin B for treatment of histoplasmosis following pulmonary challenge in a murine model. Antimicrob Agents Chemother 44:1850–1854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Seyedmousavi S, Samerpitak K, Rijs AJ, Melchers WJ, Mouton JW, Verweij PE, de Hoog GS (2014) Antifungal susceptibility patterns of opportunistic fungi in the genera Verruconis and Ochroconis. Antimicrob Agents Chemother 58:3285–3292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Maschmeyer G, Glasmacher A (2005) Pharmacological properties and clinical efficacy of a recently licensed systemic antifungal, caspofungin. Mycoses 48:227–234

    Article  CAS  PubMed  Google Scholar 

  92. de la Torre P, Reboli AC (2014) Micafungin: an evidence-based review of its place in therapy. Core Evid 9:27–39

    PubMed  PubMed Central  Google Scholar 

  93. Estes KE, Penzak SR, Calis KA, Walsh TJ (2009) Pharmacology and antifungal properties of anidulafungin, a new echinocandin. Pharmacotherapy 29:17–30

    Article  CAS  PubMed  Google Scholar 

  94. Tassel D, Madoff MA (1968) Treatment of Candida sepsis and Cryptococcus meningitis with 5-fluorocytosine. A new antifungal agent. JAMA 206:830–832

    Article  CAS  PubMed  Google Scholar 

  95. Heidelberger C, Chaudhuri NK, Danneberg P, Mooren D, Griesbach L, Duschinsky R, Schnitzer RJ, Pleven E, Scheiner J (1957) Fluorinated pyrimidines, a new class of tumour-inhibitory compounds. Nature 179:663–666

    Article  CAS  PubMed  Google Scholar 

  96. Polak A, Scholer HJ (1975) Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemotherapy 21:113–130

    Article  CAS  PubMed  Google Scholar 

  97. Cutler RE, Blair AD, Kelly MR (1978) Flucytosine kinetics in subjects with normal and impaired renal function. Clin Pharmacol Ther 24:333–342

    Article  CAS  PubMed  Google Scholar 

  98. Polak A (1977) 5-Fluorocytosine—current status with special references to mode of action and drug resistance. Contrib Microbiol Immunol 4:158–167

    CAS  PubMed  Google Scholar 

  99. Benson JM, Nahata MC (1988) Clinical use of systemic antifungal agents. Clin Pharm 7:424–438

    CAS  PubMed  Google Scholar 

  100. Pfaller MA, Messer SA, Boyken L, Huynh H, Hollis RJ, Diekema DJ (2002) In vitro activities of 5-fluorocytosine against 8,803 clinical isolates of Candida spp.: global assessment of primary resistance using National Committee for Clinical Laboratory Standards susceptibility testing methods. Antimicrob Agents Chemother 46:3518–3521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Pfaller MA, Messer SA, Boyken L, Rice C, Tendolkar S, Hollis RJ, Doern GV, Diekema DJ (2005) Global trends in the antifungal susceptibility of Cryptococcus neoformans (1990 to 2004). J Clin Microbiol 43:2163–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Verweij PE, Te Dorsthorst DT, Janssen WH, Meis JF, Mouton JW (2008) In vitro activities at pH 5.0 and pH 7.0 and in vivo efficacy of flucytosine against Aspergillus fumigatus. Antimicrob Agents Chemother 52:4483–4485

    Google Scholar 

  103. Shadomy S (1969) In vitro studies with 5-fluorocytosine. Appl Microbiol 17:871–877

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Pappas PG, Rex JH, Sobel JD, Filler SG, Dismukes WE, Walsh TJ, Edwards JE, Infectious Diseases Society of America (2004) Guidelines for treatment of candidiasis. Clin Infect Dis 38:161–189

    Article  PubMed  Google Scholar 

  105. Hospenthal DR, Bennett JE (1998) Flucytosine monotherapy for cryptococcosis. Clin Infect Dis 27:260–264

    Article  CAS  PubMed  Google Scholar 

  106. Andes D, Pascual A, Marchetti O (2009) Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrob Agents Chemother 53:24–34

    Article  CAS  PubMed  Google Scholar 

  107. (AFST-EUCAST) (2008) EUCAST Technical Note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia-forming moulds. Clin Microbiol Infect 14:982–984

    Article  Google Scholar 

  108. CLSI (2008) Reference method for broth dilution antifungal susceptibilitytesting of filamentous fungi; approved standard-second edition. CLSI Document. M38-A2., vol 28 no.16. Clinical and Laboratory Standards Institute, Wane, PA

    Google Scholar 

  109. Kanafani ZA, Perfect JR (2008) Antimicrobial resistance: resistance to antifungal agents: mechanisms and clinical impact. Clin Infect Dis 46:120–128

    Article  PubMed  Google Scholar 

  110. Arendrup MC (2014) Update on antifungal resistance in Aspergillus and Candida. Clin Microbiol Infect 20 (Suppl 6):42–48

    Article  CAS  PubMed  Google Scholar 

  111. Cuenca-Estrella M (2014) Antifungal drug resistance mechanisms in pathogenic fungi: from bench to bedside. Clin Microbiol Infect 20(Suppl 6):54–59

    Article  CAS  PubMed  Google Scholar 

  112. Cowen LE, Sanglard D, Howard SJ, Rogers PD, Perlin DS (2014) Mechanisms of antifungal drug resistance. Cold Spring Harb Perspect Med 10:5(7): a019752

    Google Scholar 

  113. Pfaller MA (2012) Antifungal drug resistance: mechanisms, epidemiology, and consequences for treatment. Am J Med 125:S3–S13

    Article  CAS  PubMed  Google Scholar 

  114. Verweij PE, Mellado E, Melchers WJ (2007) Multiple-triazole-resistant aspergillosis. N Engl J Med 356:1481–1483

    Article  CAS  PubMed  Google Scholar 

  115. Lewis RE (2011) Current concepts in antifungal pharmacology. Mayo Clin Proc 86:805–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Seyedmousavi S, Mouton JW, Verweij PE, Bruggeman RJM (2013) Therapeutic drug monitoring of voriconazole and posaconazole for invasive aspergillosis. Expert Rev Anti-Infect Ther 11(9): 931–41

    Google Scholar 

  117. Ostrosky-Zeichner L, Casadevall A, Galgiani JN, Odds FC, Rex JH (2010) An insight into the antifungal pipeline: selected new molecules and beyond. Nat Rev Drug Discov 9:719–727

    Article  CAS  PubMed  Google Scholar 

  118. Roemer T, Krysan DJ (2014) Antifungal drug development: challenges, unmet clinical needs, and new approaches. Cold Spring Harb Perspect Med 1; 4(5)

    Google Scholar 

  119. Rex JH, Walsh TJ, Nettleman M, Anaissie EJ, Bennett JE, Bow EJ, Carillo-Munoz AJ, Chavanet P, Cloud GA, Denning DW, de Pauw BE, Edwards JE Jr, Hiemenz JW, Kauffman CA, Lopez-Berestein G, Martino P, Sobel JD, Stevens DA, Sylvester R, Tollemar J, Viscoli C, Viviani MA, Wu T (2001) Need for alternative trial designs and evaluation strategies for therapeutic studies of invasive mycoses. Clin Infect Dis 33:95–106

    Article  CAS  PubMed  Google Scholar 

  120. Vandeputte P, Ferrari S, Coste AT (2012) Antifungal resistance and new strategies to control fungal infections. Int J Microbiol 2012:713687

    Article  PubMed  CAS  Google Scholar 

  121. Jung SH, Lim DH, Jung SH, Lee JE, Jeong KS, Seong H, Shin BC (2009) Amphotericin B-entrapping lipid nanoparticles and their in vitro and in vivo characteristics. Eur J Pharm Sci 37:313–320

    Google Scholar 

  122. Serrano DR, Lalatsa A, Dea-Ayuela MA, Bilbao-Ramos PE, Garrett NL, Moger J, Guarro J, Capilla J, Ballesteros MP, Schatzlein AG, Bolas F, Torrado JJ, Uchegbu IF (2015) Oral particle uptake and organ targeting drives the activity of amphotericin B nanoparticles. Mol Pharm 12:420–431

    Article  CAS  PubMed  Google Scholar 

  123. Perfect JR, Dodds Ashley E, Drew R (2004) Design of aerosolized amphotericin b formulations for prophylaxis trials among lung transplant recipients. Clin Infect Dis 39(Suppl 4):S207–S210

    Article  CAS  PubMed  Google Scholar 

  124. Jung H, Kim HM, Choy YB, Hwang SJ, Choy JH (2008) Laponite-based nanohybrid for enhanced solubility and controlled release of itraconazole. Int J Pharm 349:283–290

    Article  CAS  PubMed  Google Scholar 

  125. Guillon R, Pagniez F, Picot C, Hedou D, Tonnerre A, Chosson E, Duflos M, Besson T, Loge C, Le Pape P (2013) Discovery of a novel broad-spectrum antifungal agent derived from albaconazole. ACS Med Chem Lett 4:288–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bartroli J, Turmo E, Alguero M, Boncompte E, Vericat ML, Conte L, Ramis J, Merlos M, Garcia-Rafanell J, Forn J (1998) New azole antifungals. 3. Synthesis and antifungal activity of 3-substituted-4(3H)-quinazolinones. J Med Chem 41:1869–1882

    Article  CAS  PubMed  Google Scholar 

  127. Miller JL, Schell WA, Wills EA, Toffaletti DL, Boyce M, Benjamin DK Jr, Bartroli J, Perfect JR (2004) In vitro and in vivo efficacies of the new triazole albaconazole against Cryptococcus neoformans. Antimicrob Agents Chemother 48:384–387

    Google Scholar 

  128. Espinel-Ingroff A (2001) In vitro fungicidal activities of voriconazole, itraconazole, and amphotericin B against opportunistic moniliaceous and dematiaceous fungi. J Clin Microbiol 39:954–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Ramos G, Cuenca-Estrella M, Monzon A, Rodriguez-Tudela JL (1999) In vitro comparative activity of UR-9825, itraconazole and fluconazole against clinical isolates of Candida spp. J Antimicrob Chemother 44:283–286

    Google Scholar 

  130. Bartroli X, Uriach J (2005) A clinical multicenter study comparing efficacy and tolerability between five single oral doses of albaconazole and fluconazole 150 mg single dose in acute vulvovaginal candidiasis 45th Interscience Conference on Antimicrobial Agents and Chemotherapy: Abs M-722

    Google Scholar 

  131. Turel O (2011) Newer antifungal agents. Expert Rev Anti Infect Ther 9:325–338

    Article  CAS  PubMed  Google Scholar 

  132. Lamoth F, Alexander BD (2015) Antifungal activities of SCY-078 (MK-3118) and standard antifungal agents against clinical non-Aspergillus mould isolates. Antimicrob Agents Chemother 59:4308–4311

    Google Scholar 

  133. Pfaller MA, Messer SA, Motyl MR, Jones RN, Castanheira M (2013) Activity of MK-3118, a new oral glucan synthase inhibitor, tested against Candida spp. by two international methods (CLSI and EUCAST). J Antimicrob Chemother 68:858–863

    Article  CAS  PubMed  Google Scholar 

  134. Walker SS, Xu Y, Triantafyllou I, Waldman MF, Mendrick C, Brown N, Mann P, Chau A, Patel R, Bauman N, Norris C, Antonacci B, Gurnani M, Cacciapuoti A, McNicholas PM, Wainhaus S, Herr RJ, Kuang R, Aslanian RG, Ting PC, Black TA (2011) Discovery of a novel class of orally active antifungal beta-1,3-D-glucan synthase inhibitors. Antimicrob Agents Chemother 55:5099–5106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Lepak AJ, Marchillo K, Andes DR (2015) Pharmacodynamic target evaluation of a novel oral glucan synthase inhibitor, SCY-078 (MK-3118), using anin vivo murine invasive candidiasis model. Antimicrob Agents Chemother 59:1265–1272

    Google Scholar 

  136. Pfaller MA, Messer SA, Motyl MR, Jones RN, Castanheira M (2013) In vitro activity of a new oral glucan synthase inhibitor (MK-3118) tested against Aspergillus spp. by CLSI and EUCAST broth microdilution methods. Antimicrob Agents Chemother 57:1065–1068

    Google Scholar 

  137. James K, Krishnan R, Smith S, Laudeman C, Polowy K, Vaidya A (2014) Biafungin (SP 3025), a novel echinocandin, displays a long half-life in the chimpanzee, suggesting a once-weekly IV dosing option. 54th Interscience Conference on Antimicrobial Agents andChemotherapy: Abs A-694

    Google Scholar 

  138. Castanheira M, Messer SA, Rhomberg PR, Jones RN, Pfaller MA (2014) Activity of a novel echinocandin biafungin (CD101) tested against most common Candida and Aspergillus species, including echinocandin- and azole-resistant strains, 54th Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC), Washington, DC, September 5–9

    Google Scholar 

  139. Munro CA, Gow NA (2001) Chitin synthesis in human pathogenic fungi. Med Mycol 39 (Suppl 1):41–53

    Article  CAS  PubMed  Google Scholar 

  140. Chaudhary PM, Tupe SG, Deshpande MV (2013) Chitin synthase inhibitors as antifungal agents. Mini Rev Med Chem 13:222–236

    CAS  PubMed  Google Scholar 

  141. Uda J, Obi K, Iwase K, Sugimoto O, Ebisu H, Matsuda A (1999) Synthesis and structure-activity relationships of novel nikkomycin analogs: inhibitors of the fungal cell wall biosynthesis enzyme chitin synthase. Nucleic Acids Symp Ser 13–14

    Google Scholar 

  142. Gaughran JP, Lai MH, Kirsch DR, Silverman SJ (1994) Nikkomycin Z is a specific inhibitor of Saccharomyces cerevisiae chitin synthase isozyme Chs3 in vitro and in vivo. J Bacteriol 176:5857–5860

    Google Scholar 

  143. Cabib E (1991) Differential inhibition of chitin synthetases 1 and 2 from Saccharomyces cerevisiae by polyoxin D and nikkomycins. Antimicrob Agents Chemother 35:170–173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Hector RF, Zimmer BL, Pappagianis D (1990) Evaluation of nikkomycins X and Z in murine models of coccidioidomycosis, histoplasmosis, and blastomycosis. Antimicrob Agents Chemother 34:587–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Clemons KV, Stevens DA (1997) Efficacy of nikkomycin Z against experimental pulmonary blastomycosis. Antimicrob Agents Chemother 41:2026–2028

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Stevens DA (2000) Drug interaction studies of a glucan synthase inhibitor (LY 303366) and a chitin synthase inhibitor (Nikkomycin Z) for inhibition and killing of fungal pathogens. Antimicrob Agents Chemother 44:2547–2548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chiou CC, Mavrogiorgos N, Tillem E, Hector R, Walsh TJ (2001) Synergy, pharmacodynamics, and time-sequenced ultrastructural changes of the interaction between nikkomycin Z and the echinocandin FK463 against Aspergillus fumigatus. Antimicrob Agents Chemother 45:3310–3321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Stevens DA, Calderon L, Martinez M, Clemons KV, Wilson SJ, Selitrennikoff CP (2002) Zeamatin, clotrimazole and nikkomycin Z in therapy of a Candida vaginitis model. J Antimicrob Chemother 50:361–364

    Google Scholar 

  149. Ganesan LT, Manavathu EK, Cutright JL, Alangaden GJ, Chandrasekar PH (2004) In vitro activity of nikkomycin Z alone and in combination with polyenes, triazoles or echinocandins against Aspergillus fumigatus. Clin Microbiol Infect 10:961–966

    Google Scholar 

  150. Nix DE, Swezey RR, Hector R, Galgiani JN (2009) Pharmacokinetics of nikkomycin Z after single rising oral doses. Antimicrob Agents Chemother 53:2517–2521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Justice MC, Ku T, Hsu MJ, Carniol K, Schmatz D, Nielsen J (1999) Mutations in ribosomal protein L10e confer resistance to the fungal-specific eukaryotic elongation factor 2 inhibitor sordarin. J Biol Chem 274:4869–4875

    Article  CAS  PubMed  Google Scholar 

  152. Dominguez JM, Kelly VA, Kinsman OS, Marriott MS, Gomez de las Heras F, Martin JJ (1998) Sordarins: a new class of antifungals with selective inhibition of the protein synthesis elongation cycle in yeasts. Antimicrob Agents Chemother 42:2274–2278

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Liang H (2008) Sordarin, an antifungal agent with a unique mode of action. Beilstein J Org Chem 4:31

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Capa L, Mendoza A, Lavandera JL, Gomez de las Heras F, Garcia-Bustos JF (1998) Translation elongation factor 2 is part of the target for a new family of antifungals. Antimicrob Agents Chemother 42:2694–2699

    CAS  PubMed  PubMed Central  Google Scholar 

  155. Martinez A, Aviles P, Jimenez E, Caballero J, Gargallo-Viola D (2000) Activities of sordarins in experimental models of candidiasis, aspergillosis, and pneumocystosis. Antimicrob Agents Chemother 44:3389–3394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Herreros E, Martinez CM, Almela MJ, Marriott MS, De Las Heras FG, Gargallo-Viola D (1998) Sordarins: in vitro activities of new antifungal derivatives against pathogenic yeasts, Pneumocystis carinii, and filamentous fungi. Antimicrob Agents Chemother 42:2863–2869

    Google Scholar 

  157. Odds FC, Brown AJ, Gow NA (2003) Antifungal agents: mechanisms of action. Trends Microbiol 11:272–279

    Article  CAS  PubMed  Google Scholar 

  158. Kamai Y, Kakuta M, Shibayama T, Fukuoka T, Kuwahara S (2005) Antifungal activities of R-135853, a sordarin derivative, in experimental candidiasis in mice. Antimicrob Agents Chemother 49:52–56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Hanadate T, Tomishima M, Shiraishi N, Tanabe D, Morikawa H, Barrett D, Matsumoto S, Ohtomo K, Maki K (2009) FR290581, a novel sordarin derivative: synthesis and antifungal activity. Bioorg Med Chem Lett 19:1465–1468

    Article  CAS  PubMed  Google Scholar 

  160. Hoekstra WJ, Garvey EP, Moore WR, Rafferty SW, Yates CM, Schotzinger RJ (2014) Design and optimization of highly-selective fungal CYP51 inhibitors. Bioorg Med Chem Lett 24:3455–3458

    Article  CAS  PubMed  Google Scholar 

  161. Fothergill AW, McCarthy DI, Sutton DA, Garvey EP, Hoekstra WJ, Moore WR, Schotzinger RJ, Wiederhold NP. The fungal Cyp51 inhibitor VT-1161 demonstrates in vitro synergy with tacrolimus against Aspergillus spp. and members of the order Mucorales, Abstr 54th Intersci Conf Antimicrob Agents Chemother. American Society for Microbiology Washington, DC

    Google Scholar 

  162. Gebremariam T, Wiederhold NP, Fothergill AW, Garvey EP, Hoekstra WJ, Schotzinger RJ, Patterson TF, Filler SG, Ibrahim AS (2015) VT-1161 Protects immunosuppressed mice from Rhizopus arrhizus var. arrhizus infection. Antimicrob Agents Chemother 59(12):7815–781710.1128/AAC.01437-15

  163. Shubitz LF, Trinh HT, Galgiani JN, Lewis ML, Garvey EP, Hoekstra WJ, Moore WR, Schotzinger RJ. CT-1161, a novel fungal CYP51 inhibitor, improved survival in murine models of coccidioidomycosis, p M-433. Abstr 54th Intersci Conf Antimicrob Agents Chemother American Society for Microbiology, Washington, DC

    Google Scholar 

  164. Garvey EP, Hoekstra WJ, Moore WR, Schotzinger RJ, Long L, Ghannoum MA (2015) VT-1161 dosed once daily or once weekly exhibits potent efficacy in treatment of dermatophytosis in a guinea pig model. Antimicrob Agents Chemother 59:1992–1997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Najvar N, Wiederhold NP, Alimardanov A, Cradock J, Xu X, Behnke M, Ottinger EA, Hoekstra WJ, Garvey EP, Brand SR, Schotzinger RJ, Moore WR, Bocanegra R, Kirkpatrick WR, Patterson TF (2014) The novel fungal Cyp51 inhibitor VT-1129 demonstrates potent in vivo activity against cryptococcal meningitis with an improved formulation, Abstr 54th Intersci Conf Antimicrob Agents Chemother American Society for Microbiology, Washington, DC

    Google Scholar 

  166. Oliver J, Law D, Sibley G, Kennedy A, Birch M (2015) F901318, a novel antifungal agent from the orotomide class: discovery and mechanism of action, Abstr 55th Intersci Conf Antimicrob Agents Chemother American Society for Microbiology, San Diego, CA

    Google Scholar 

  167. Law D, Oliver J, Warn P, Kennedy A, Sibley G, Birch M. In vivo efficacy of orally dosed F901318, in a murine model of disseminated aspergillosis, Abstr 55th Intersci Conf Antimicrob Agents Chemother American Society for Microbiology, San Diego, CA

    Google Scholar 

  168. Wiederhold NP, Najvar LK, Matsumoto S, Bocanegra RA, Herrera ML, Wickes BL, Kirkpatrick WR, Patterson TF (2015) Efficacy of the investigational echinocandin ASP9726 in a guinea pig model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother 59:2875–2881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Morikawa H, Tomishima M, Kayakiri N, Araki T, Barrett D, Akamatsu S, Matsumoto S, Uchida S, Nakai T, Takeda S, Maki K (2014) Synthesis and antifungal activity of ASP9726, a novel echinocandin with potent Aspergillus hyphal growth inhibition. Bioorg Med Chem Lett 24:1172–1175

    Article  CAS  PubMed  Google Scholar 

  170. Wiederhold NP, Najvar LK, Fothergill AW, Bocanegra R, Olivo M, McCarthy DI, Kirkpatrick WR, Fukuda Y, Mitsuyama J, Patterson TF (2015) The novel arylamidine T-2307 maintains in vitro and in vivo activity against echinocandin-resistant Candida albicans. Antimicrob Agents Chemother 59:1341–1343

    Google Scholar 

  171. Shibata T, Takahashi T, Yamada E, Kimura A, Nishikawa H, Hayakawa H, Nomura N, Mitsuyama J (2012) T-2307 causes collapse of mitochondrial membrane potential in yeast. Antimicrob Agents Chemother 56:5892–5897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Mitsuyama J, Nomura N, Hashimoto K, Yamada E, Nishikawa H, Kaeriyama M, Kimura A, Todo Y, Narita H (2008) In vitro and in vivo antifungal activities of T-2307, a novel arylamidine. Antimicrob Agents Chemother 52:1318–1324

    Google Scholar 

  173. Deng S, Pan W, Liao W, de Hoog GS, Gerrits van den Ende AH, Vitale RG, Rafati H, Ilkit M, Van der Lee AH, Rijs AJ, Verweij PE, Seyedmousavi S (2016) Combination of Amphotericin B and Flucytosine against Neurotropic Species of Melanized Fungi Causing Primary Cerebral Phaeohyphomycosis. Antimicrob Agents Chemother 60:2346–2351

    Google Scholar 

Download references

Conflicts of Interest

S.S. received research grant from Astellas Pharma B.V. P.E.V. has served as a consultant and received research grants from Astellas, Basilea, Gilead Sciences, Merck, and Pfizer. All other authors have no conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyedmojtaba Seyedmousavi Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Seyedmousavi, S., Rafati, H., Ilkit, M., Tolooe, A., Hedayati, M.T., Verweij, P. (2017). Systemic Antifungal Agents: Current Status and Projected Future Developments. In: Lion, T. (eds) Human Fungal Pathogen Identification. Methods in Molecular Biology, vol 1508. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6515-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6515-1_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6513-7

  • Online ISBN: 978-1-4939-6515-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics