Advertisement

Molecular Detection of Resistance to Echinocandins

  • Brunella PosteraroEmail author
  • Antonietta Vella
  • Elena De Carolis
  • Maurizio Sanguinetti
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1508)

Abstract

In the last years, life-threatening fungal diseases have increased significantly, due to the rising number of human individuals susceptible to fungal infections, which are in part complicated by the emergence of antifungal drug-resistant pathogens. Among yeasts, Candida albicans and Candida glabrata are the most common organisms responsible for invasive fungal diseases. The molecular detection of echinocandin resistance in Candida species may represent a useful means of monitoring the incidence of clinical isolates with antifungal resistance-associated gene alterations. Here, we describe the current methods that enable researchers and/or clinical microbiologists to accurately detect echinocandin-resistant isolates of C. albicans and C. glabrata.

Key words

Antifungal drug resistance Fungal pathogens Molecular analysis Quantitative real-time RT-PCR Gene sequencing 

References

  1. 1.
    Garcia-Effron G, Park S, Perlin DS (2009) Correlating echinocandin MIC and kinetic inhibition of fks1 mutant glucan synthases for Candida albicans: implications for interpretive breakpoints. Antimicrob Agents Chemother 53:112–122CrossRefPubMedGoogle Scholar
  2. 2.
    Garcia-Effron G, Lee S, Park S, Cleary JD, Perlin DS (2009) Effect of Candida glabrata fks1 and fks2 mutations on echinocandin sensitivity and kinetics of 1,3-β-d-glucan synthase: implication for the existing susceptibility breakpoint. Antimicrob Agents Chemother 53:3690–3699CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Slater JL, Howard SJ, Sharp A, Goodwin J, Gregson LM, Alastruey-Izquierdo A, Arendrup MC, Warn PA, Perlin DS, Hope WW (2011) Disseminated candidiasis caused by Candida albicans with amino acid substitutions in fks1 at position ser645 cannot be successfully treated with micafungin. Antimicrob Agents Chemother 55:3075–3083CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Thompson GR, Wiederhold NP, Vallor AC, Villareal NC, Lewis JS, Patterson TF (2008) Development of caspofungin resistance following prolonged therapy for invasive candidiasis secondary to Candida glabrata infection. Antimicrob Agents Chemother 52:3783–3785CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Rychlik W, Spencer WJ, Rhoads RE (1990) Optimization of the annealing temperature for DNA amplification in vitro. Nucleic Acids Res 18:6409–6412Google Scholar
  7. 7.
    Kramer MF, Coen DM (2001) Enzymatic amplification of DNA by PCR: standard procedures and optimization. Curr Protoc Cell Biol A.3F.1–A.3F.14Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Brunella Posteraro
    • 1
    Email author
  • Antonietta Vella
    • 2
  • Elena De Carolis
    • 2
  • Maurizio Sanguinetti
    • 2
  1. 1.Section of Hygiene, Institute of Public HealthUniversità Cattolica del Sacro CuoreRomeItaly
  2. 2.Institute of MicrobiologyUniversità Cattolica del Sacro CuoreRomeItaly

Personalised recommendations