Advertisement

Microarray Technologies in Fungal Diagnostics

  • Steffen RuppEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1508)

Abstract

Microarray technologies have been a major research tool in the last decades. In addition they have been introduced into several fields of diagnostics including diagnostics of infectious diseases. Microarrays are highly parallelized assay systems that initially were developed for multiparametric nucleic acid detection. From there on they rapidly developed towards a tool for the detection of all kind of biological compounds (DNA, RNA, proteins, cells, nucleic acids, carbohydrates, etc.) or their modifications (methylation, phosphorylation, etc.). The combination of closed-tube systems and lab on chip devices with microarrays further enabled a higher automation degree with a reduced contamination risk. Microarray-based diagnostic applications currently complement and may in the future replace classical methods in clinical microbiology like blood cultures, resistance determination, microscopic and metabolic analyses as well as biochemical or immunohistochemical assays. In addition, novel diagnostic markers appear, like noncoding RNAs and miRNAs providing additional room for novel nucleic acid based biomarkers. Here I focus an microarray technologies in diagnostics and as research tools, based on nucleic acid-based arrays.

Key words

DNA microarray SNP analyses Molecular diagnostics 

Notes

Acknowledgements

This review was made possible through the EU-Project FUNGITECT (Grant no: 602125).

References

  1. 1.
    Gergen JP, Stern RH, Wensink PC (1979) Filter replicas and permanent collections of recombinant DNA plasmids. Nucleic Acids Res 7(8):2115–2136CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470CrossRefPubMedGoogle Scholar
  3. 3.
    Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274(5287):546, 563–547Google Scholar
  4. 4.
    Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann N, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson JD, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie WR, de la Bastide M, Dedhia N, Blocker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowski J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, International Human Genome Sequencing C (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921. doi: 10.1038/35057062 CrossRefPubMedGoogle Scholar
  5. 5.
    Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, Gocayne JD, Amanatides P, Ballew RM, Huson DH, Wortman JR, Zhang Q, Kodira CD, Zheng XH, Chen L, Skupski M, Subramanian G, Thomas PD, Zhang J, Gabor Miklos GL, Nelson C, Broder S, Clark AG, Nadeau J, McKusick VA, Zinder N, Levine AJ, Roberts RJ, Simon M, Slayman C, Hunkapiller M, Bolanos R, Delcher A, Dew I, Fasulo D, Flanigan M, Florea L, Halpern A, Hannenhalli S, Kravitz S, Levy S, Mobarry C, Reinert K, Remington K, Abu-Threideh J, Beasley E, Biddick K, Bonazzi V, Brandon R, Cargill M, Chandramouliswaran I, Charlab R, Chaturvedi K, Deng Z, Di Francesco V, Dunn P, Eilbeck K, Evangelista C, Gabrielian AE, Gan W, Ge W, Gong F, Gu Z, Guan P, Heiman TJ, Higgins ME, Ji RR, Ke Z, Ketchum KA, Lai Z, Lei Y, Li Z, Li J, Liang Y, Lin X, Lu F, Merkulov GV, Milshina N, Moore HM, Naik AK, Narayan VA, Neelam B, Nusskern D, Rusch DB, Salzberg S, Shao W, Shue B, Sun J, Wang Z, Wang A, Wang X, Wang J, Wei M, Wides R, Xiao C, Yan C, Yao A, Ye J, Zhan M, Zhang W, Zhang H, Zhao Q, Zheng L, Zhong F, Zhong W, Zhu S, Zhao S, Gilbert D, Baumhueter S, Spier G, Carter C, Cravchik A, Woodage T, Ali F, An H, Awe A, Baldwin D, Baden H, Barnstead M, Barrow I, Beeson K, Busam D, Carver A, Center A, Cheng ML, Curry L, Danaher S, Davenport L, Desilets R, Dietz S, Dodson K, Doup L, Ferriera S, Garg N, Gluecksmann A, Hart B, Haynes J, Haynes C, Heiner C, Hladun S, Hostin D, Houck J, Howland T, Ibegwam C, Johnson J, Kalush F, Kline L, Koduru S, Love A, Mann F, May D, McCawley S, McIntosh T, McMullen I, Moy M, Moy L, Murphy B, Nelson K, Pfannkoch C, Pratts E, Puri V, Qureshi H, Reardon M, Rodriguez R, Rogers YH, Romblad D, Ruhfel B, Scott R, Sitter C, Smallwood M, Stewart E, Strong R, Suh E, Thomas R, Tint NN, Tse S, Vech C, Wang G, Wetter J, Williams S, Williams M, Windsor S, Winn-Deen E, Wolfe K, Zaveri J, Zaveri K, Abril JF, Guigo R, Campbell MJ, Sjolander KV, Karlak B, Kejariwal A, Mi H, Lazareva B, Hatton T, Narechania A, Diemer K, Muruganujan A, Guo N, Sato S, Bafna V, Istrail S, Lippert R, Schwartz R, Walenz B, Yooseph S, Allen D, Basu A, Baxendale J, Blick L, Caminha M, Carnes-Stine J, Caulk P, Chiang YH, Coyne M, Dahlke C, Mays A, Dombroski M, Donnelly M, Ely D, Esparham S, Fosler C, Gire H, Glanowski S, Glasser K, Glodek A, Gorokhov M, Graham K, Gropman B, Harris M, Heil J, Henderson S, Hoover J, Jennings D, Jordan C, Jordan J, Kasha J, Kagan L, Kraft C, Levitsky A, Lewis M, Liu X, Lopez J, Ma D, Majoros W, McDaniel J, Murphy S, Newman M, Nguyen T, Nguyen N, Nodell M, Pan S, Peck J, Peterson M, Rowe W, Sanders R, Scott J, Simpson M, Smith T, Sprague A, Stockwell T, Turner R, Venter E, Wang M, Wen M, Wu D, Wu M, Xia A, Zandieh A, Zhu X (2001) The sequence of the human genome. Science 291(5507):1304–1351. doi: 10.1126/science.1058040 CrossRefPubMedGoogle Scholar
  6. 6.
    DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278(5338):680–686CrossRefPubMedGoogle Scholar
  7. 7.
    Lashkari DA, DeRisi JL, McCusker JH, Namath AF, Gentile C, Hwang SY, Brown PO, Davis RW (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci U S A 94(24):13057–13062CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Dunbar SA (2006) Applications of Luminex xMAP technology for rapid, high-throughput multiplexed nucleic acid detection. Clin Chim Acta 363(1-2):71–82. doi: 10.1016/j.cccn.2005.06.023 CrossRefPubMedGoogle Scholar
  9. 9.
    Horan PK, Wheeless LL Jr (1977) Quantitative single cell analysis and sorting. Science 198(4313):149–157CrossRefPubMedGoogle Scholar
  10. 10.
    Ericsson O, Sivertsson A, Lundeberg J, Ahmadian A (2003) Microarray-based resequencing by apyrase-mediated allele-specific extension. Electrophoresis 24(19-20):3330–3338. doi: 10.1002/elps.200305583 CrossRefPubMedGoogle Scholar
  11. 11.
    Brady PD, Vermeesch JR (2012) Genomic microarrays: a technology overview. Prenat Diagn 32(4):336–343. doi: 10.1002/pd.2933 CrossRefPubMedGoogle Scholar
  12. 12.
    Dufva M (2009) Introduction to microarray technology. Methods Mol Biol 529:1–22. doi: 10.1007/978-1-59745-538-1_1 CrossRefPubMedGoogle Scholar
  13. 13.
    Heller MJ (2002) DNA microarray technology: devices, systems, and applications. Annu Rev Biomed Eng 4:129–153. doi: 10.1146/annurev.bioeng.4.020702.153438 CrossRefPubMedGoogle Scholar
  14. 14.
    Pollack JR (2009) DNA microarray technology. Introduction. Methods Mol Biol 556:1–6. doi: 10.1007/978-1-60327-192-9_1 CrossRefPubMedGoogle Scholar
  15. 15.
    Kapranov P, Cawley SE, Drenkow J, Bekiranov S, Strausberg RL, Fodor SP, Gingeras TR (2002) Large-scale transcriptional activity in chromosomes 21 and 22. Science 296(5569):916–919. doi: 10.1126/science.1068597 CrossRefPubMedGoogle Scholar
  16. 16.
    Rinn JL, Euskirchen G, Bertone P, Martone R, Luscombe NM, Hartman S, Harrison PM, Nelson FK, Miller P, Gerstein M, Weissman S, Snyder M (2003) The transcriptional activity of human Chromosome 22. Genes Dev 17(4):529–540. doi: 10.1101/gad.1055203 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yoder SJ (2015) ChIP-on-chip analysis methods for Affymetrix tiling arrays. Methods Mol Biol 1288:473–487. doi: 10.1007/978-1-4939-2474-5_27 CrossRefPubMedGoogle Scholar
  18. 18.
    Yoder SJ, Enkemann SA (2009) ChIP-on-chip analysis methods for Affymetrix tiling arrays. Methods Mol Biol 523:367–381. doi: 10.1007/978-1-59745-190-1_24 CrossRefPubMedGoogle Scholar
  19. 19.
    Rubtsova MY, Ulyashova MM, Edelstein MV, Egorov AM (2010) Oligonucleotide microarrays with horseradish peroxidase-based detection for the identification of extended-spectrum beta-lactamases. Biosens Bioelectron 26(4):1252–1260. doi: 10.1016/j.bios.2010.06.053 CrossRefPubMedGoogle Scholar
  20. 20.
    Cretich M, Monroe MR, Reddington A, Zhang X, Daaboul GG, Damin F, Sola L, Unlu MS, Chiari M (2012) Interferometric silicon biochips for label and label-free DNA and protein microarrays. Proteomics 12(19-20):2963–2977. doi: 10.1002/pmic.201200202 CrossRefPubMedGoogle Scholar
  21. 21.
    Kodama Y, Shumway M, Leinonen R, International Nucleotide Sequence Database Collaboration (2012) The sequence read archive: explosive growth of sequencing data. Nucleic Acids Res 40(Database issue):D54–D56. doi: 10.1093/nar/gkr854 CrossRefPubMedGoogle Scholar
  22. 22.
    Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z, Dewell SB, Du L, Fierro JM, Gomes XV, Godwin BC, He W, Helgesen S, Ho CH, Irzyk GP, Jando SC, Alenquer ML, Jarvie TP, Jirage KB, Kim JB, Knight JR, Lanza JR, Leamon JH, Lefkowitz SM, Lei M, Li J, Lohman KL, Lu H, Makhijani VB, McDade KE, McKenna MP, Myers EW, Nickerson E, Nobile JR, Plant R, Puc BP, Ronan MT, Roth GT, Sarkis GJ, Simons JF, Simpson JW, Srinivasan M, Tartaro KR, Tomasz A, Vogt KA, Volkmer GA, Wang SH, Wang Y, Weiner MP, Yu P, Begley RF, Rothberg JM (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380. doi: 10.1038/nature03959 PubMedPubMedCentralGoogle Scholar
  23. 23.
    Hauser NC, Vingron M, Scheideler M, Krems B, Hellmuth K, Entian KD, Hoheisel JD (1998) Transcriptional profiling on all open reading frames of Saccharomyces cerevisiae. Yeast 14(13):1209–1221. doi: 10.1002/(SICI)1097-0061(19980930)14:13<1209::AID-YEA311>3.0.CO;2-N CrossRefPubMedGoogle Scholar
  24. 24.
    Wodicka L, Dong H, Mittmann M, Ho MH, Lockhart DJ (1997) Genome-wide expression monitoring in Saccharomyces cerevisiae. Nat Biotechnol 15(13):1359–1367. doi: 10.1038/nbt1297-1359
  25. 25.
    Bremer M, Himelblau E, Madlung A (2010) Introduction to the statistical analysis of two-color microarray data. Methods Mol Biol 620:287–313. doi: 10.1007/978-1-60761-580-4_9 CrossRefPubMedGoogle Scholar
  26. 26.
    Hughes TR, Mao M, Jones AR, Burchard J, Marton MJ, Shannon KW, Lefkowitz SM, Ziman M, Schelter JM, Meyer MR, Kobayashi S, Davis C, Dai H, He YD, Stephaniants SB, Cavet G, Walker WL, West A, Coffey E, Shoemaker DD, Stoughton R, Blanchard AP, Friend SH, Linsley PS (2001) Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer. Nat Biotechnol 19(4):342–347. doi: 10.1038/86730 CrossRefPubMedGoogle Scholar
  27. 27.
    Tan PK, Downey TJ, Spitznagel EL Jr, Xu P, Fu D, Dimitrov DS, Lempicki RA, Raaka BM, Cam MC (2003) Evaluation of gene expression measurements from commercial microarray platforms. Nucleic Acids Res 31(19):5676–5684CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Hauser NC, Dukalska M, Fellenberg K, Rupp S (2009) From experimental setup to data analysis in transcriptomics: copper metabolism in the human pathogen Candida albicans. J Biophotonics 2(4):262–268. doi: 10.1002/jbio.200910004
  29. 29.
    Weishaupt SU, Rupp S, Lemuth K (2013) Simultaneous detection of different MicroRNA types using the ZIP-code array system. J Nucleic Acids 2013:496425. doi: 10.1155/2013/496425 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Fodor SP, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D (1991) Light-directed, spatially addressable parallel chemical synthesis. Science 251(4995):767–773CrossRefPubMedGoogle Scholar
  31. 31.
    Lockhart DJ, Dong H, Byrne MC, Follettie MT, Gallo MV, Chee MS, Mittmann M, Wang C, Kobayashi M, Horton H, Brown EL (1996) Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14(13):1675–1680. doi: 10.1038/nbt1296-1675 CrossRefPubMedGoogle Scholar
  32. 32.
    Gerry NP, Witowski NE, Day J, Hammer RP, Barany G, Barany F (1999) Universal DNA microarray method for multiplex detection of low abundance point mutations. J Mol Biol 292(2):251–262. doi: 10.1006/jmbi.1999.3063 CrossRefPubMedGoogle Scholar
  33. 33.
    Hauser NC, Martinez R, Jacob A, Rupp S, Hoheisel JD, Matysiak S (2006) Utilising the left-helical conformation of L-DNA for analysing different marker types on a single universal microarray platform. Nucleic Acids Res 34(18):5101–5111. doi: 10.1093/nar/gkl671 CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Sforza S, Tedeschi T, Bencivenni M, Tonelli A, Corradini R, Marchelli R (2014) Use of peptide nucleic acids (PNAs) for genotyping by solution and surface methods. Methods Mol Biol 1050:143–157. doi: 10.1007/978-1-62703-553-8_12 CrossRefPubMedGoogle Scholar
  35. 35.
    Brandt O, Hoheisel JD (2004) Peptide nucleic acids on microarrays and other biosensors. Trends Biotechnol 22(12):617–622. doi: 10.1016/j.tibtech.2004.10.003 CrossRefPubMedGoogle Scholar
  36. 36.
    Jacob A, Brandt O, Stephan A, Hoheisel JD (2004) Peptide nucleic acid microarrays. Methods Mol Biol 283:283–293. doi: 10.1385/1-59259-813-7:283 PubMedGoogle Scholar
  37. 37.
    Ferguson JA, Steemers FJ, Walt DR (2000) High-density fiber-optic DNA random microsphere array. Anal Chem 72(22):5618–5624CrossRefPubMedGoogle Scholar
  38. 38.
    Chibon F (2013) Cancer gene expression signatures—the rise and fall? Eur J Cancer 49(8):2000–2009. doi: 10.1016/j.ejca.2013.02.021 CrossRefPubMedGoogle Scholar
  39. 39.
    Daigo Y, Takano A, Teramoto K, Chung S, Nakamura Y (2013) A systematic approach to the development of novel therapeutics for lung cancer using genomic analyses. Clin Pharmacol Ther 94(2):218–223. doi: 10.1038/clpt.2013.90 CrossRefPubMedGoogle Scholar
  40. 40.
    Ho CC, Mun KS, Naidu R (2013) SNP array technology: an array of hope in breast cancer research. Malays J Pathol 35(1):33–43PubMedGoogle Scholar
  41. 41.
    Sato-Otsubo A, Sanada M, Ogawa S (2012) Single-nucleotide polymorphism array karyotyping in clinical practice: where, when, and how? Semin Oncol 39(1):13–25. doi: 10.1053/j.seminoncol.2011.11.010 CrossRefPubMedGoogle Scholar
  42. 42.
    Tiwari M (2012) Microarrays and cancer diagnosis. J Cancer Res Ther 8(1):3–10. doi: 10.4103/0973-1482.95166 CrossRefPubMedGoogle Scholar
  43. 43.
    Dhillon RK, Hillman SC, Morris RK, McMullan D, Williams D, Coomarasamy A, Kilby MD (2014) Additional information from chromosomal microarray analysis (CMA) over conventional karyotyping when diagnosing chromosomal abnormalities in miscarriage: a systematic review and meta-analysis. BJOG 121(1):11–21. doi: 10.1111/1471-0528.12382 CrossRefPubMedGoogle Scholar
  44. 44.
    Nikolaki S, Tsiamis G (2013) Microbial diversity in the era of omic technologies. BioMed Res Int 2013:958719. doi: 10.1155/2013/958719 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Falk J (2010) Using ChIP-based technologies to identify epigenetic modifications in disease-relevant cells. IDrugs 13(3):169–174PubMedGoogle Scholar
  46. 46.
    Powell JR, Bennett M, Waters R, Skinner N, Reed SH (2013) Functional genome-wide analysis: a technical review, its developments and its relevance to cancer research. Recent Pat DNA Gene Seq 7(2):157–166CrossRefPubMedGoogle Scholar
  47. 47.
    Phan JH, Quo CF, Wang MD (2012) Cardiovascular genomics: a biomarker identification pipeline. IEEE Trans Inf Technol Biomed 16(5):809–822. doi: 10.1109/TITB.2012.2199570 CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Villasenor-Park J, Ortega-Loayza AG (2013) Microarray technique, analysis, and applications in dermatology. J Invest Dermatol 133(4), e7. doi: 10.1038/jid.2013.64 CrossRefPubMedGoogle Scholar
  49. 49.
    Carter MT, Scherer SW (2013) Autism spectrum disorder in the genetics clinic: a review. Clin Genet 83(5):399–407. doi: 10.1111/cge.12101 CrossRefPubMedGoogle Scholar
  50. 50.
    Rupp S (2008) Transcriptomics of the fungal pathogens focusing on C. albicans. In: Brakhage AaZ P (ed) Human and animal relationships. The mycota, vol 6. Springer, Heidelberg, Berlin, pp 187–222CrossRefGoogle Scholar
  51. 51.
    Galgoczy DJ, Cassidy-Stone A, Llinas M, O'Rourke SM, Herskowitz I, DeRisi JL, Johnson AD (2004) Genomic dissection of the cell-type-specification circuit in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 101(52):18069–18074. doi: 10.1073/pnas.0407611102 CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Kadosh D, Johnson AD (2005) Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 16(6):2903–2912. doi: 10.1091/mbc.E05-01-0073 CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Tuch BB, Galgoczy DJ, Hernday AD, Li H, Johnson AD (2008) The evolution of combinatorial gene regulation in fungi. PLoS Biol 6(2), e38. doi: 10.1371/journal.pbio.0060038 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Martchenko M, Levitin A, Hogues H, Nantel A, Whiteway M (2007) Transcriptional rewiring of fungal galactose-metabolism circuitry. Curr Biol 17(12):1007–1013. doi: 10.1016/j.cub.2007.05.017 CrossRefPubMedGoogle Scholar
  55. 55.
    Nantel A, Dignard D, Bachewich C, Harcus D, Marcil A, Bouin AP, Sensen CW, Hogues H, van het Hoog M, Gordon P, Rigby T, Benoit F, Tessier DC, Thomas DY, Whiteway M (2002) Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition. Mol Biol Cell 13(10):3452–3465. doi: 10.1091/mbc.E02-05-0272 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Lotz H, Sohn K, Brunner H, Muhlschlegel FA, Rupp S (2004) RBR1, a novel pH-regulated cell wall gene of Candida albicans, is repressed by RIM101 and activated by NRG1. Eukaryotic cell 3(3):776–784. doi: 10.1128/EC.3.3.776-784.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sohn K, Urban C, Brunner H, Rupp S (2003) EFG1 is a major regulator of cell wall dynamics in Candida albicans as revealed by DNA microarrays. Mol Microbiol 47(1):89–102CrossRefPubMedGoogle Scholar
  58. 58.
    Fradin C, Kretschmar M, Nichterlein T, Gaillardin C, d'Enfert C, Hube B (2003) Stage-specific gene expression of Candida albicans in human blood. Mol Microbiol 47(6):1523–1543CrossRefPubMedGoogle Scholar
  59. 59.
    Wilson D, Thewes S, Zakikhany K, Fradin C, Albrecht A, Almeida R, Brunke S, Grosse K, Martin R, Mayer F, Leonhardt I, Schild L, Seider K, Skibbe M, Slesiona S, Waechtler B, Jacobsen I, Hube B (2009) Identifying infection-associated genes of Candida albicans in the postgenomic era. FEMS Yeast Res 9(5):688–700. doi: 10.1111/j.1567-1364.2009.00524.x CrossRefPubMedGoogle Scholar
  60. 60.
    Carter GW, Rupp S, Fink GR, Galitski T (2006) Disentangling information flow in the Ras-cAMP signaling network. Genome Res 16(4):520–526. doi: 10.1101/gr.4473506 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Lorenz MC, Bender JA, Fink GR (2004) Transcriptional response of Candida albicans upon internalization by macrophages. Eukaryotic cell 3(5):1076–1087. doi: 10.1128/EC.3.5.1076-1087.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Park H, Liu Y, Solis N, Spotkov J, Hamaker J, Blankenship JR, Yeaman MR, Mitchell AP, Liu H, Filler SG (2009) Transcriptional responses of Candida albicans to epithelial and endothelial cells. Eukaryotic cell 8(10):1498–1510. doi: 10.1128/EC.00165-09 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Ferrari S, Sanguinetti M, De Bernardis F, Torelli R, Posteraro B, Vandeputte P, Sanglard D (2011) Loss of mitochondrial functions associated with azole resistance in Candida glabrata results in enhanced virulence in mice. Antimicrob Agents Chemother 55(5):1852–1860. doi: 10.1128/AAC.01271-10
  64. 64.
    Schwarzmuller T, Ma B, Hiller E, Istel F, Tscherner M, Brunke S, Ames L, Firon A, Green B, Cabral V, Marcet-Houben M, Jacobsen ID, Quintin J, Seider K, Frohner I, Glaser W, Jungwirth H, Bachellier-Bassi S, Chauvel M, Zeidler U, Ferrandon D, Gabaldon T, Hube B, d'Enfert C, Rupp S, Cormack B, Haynes K, Kuchler K (2014) Systematic phenotyping of a large-scale Candida glabrata deletion collection reveals novel antifungal tolerance genes. PLoS Pathog 10(6), e1004211. doi: 10.1371/journal.ppat.1004211
  65. 65.
    Sigle HC, Thewes S, Niewerth M, Korting HC, Schafer-Korting M, Hube B (2005) Oxygen accessibility and iron levels are critical factors for the antifungal action of ciclopirox against Candida albicans. J Antimicrob Chemother 55(5):663–673. doi: 10.1093/jac/dki089 CrossRefPubMedGoogle Scholar
  66. 66.
    Sohn K, Senyurek I, Fertey J, Konigsdorfer A, Joffroy C, Hauser N, Zelt G, Brunner H, Rupp S (2006) An in vitro assay to study the transcriptional response during adherence of Candida albicans to different human epithelia. FEMS Yeast Res 6(7):1085–1093. doi: 10.1111/j.1567-1364.2006.00130.x
  67. 67.
    Leinberger DM, Schumacher U, Autenrieth IB, Bachmann TT (2005) Development of a DNA microarray for detection and identification of fungal pathogens involved in invasive mycoses. J Clin Microbiol 43(10):4943–4953. doi: 10.1128/JCM.43.10.4943-4953.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Huang A, Li JW, Shen ZQ, Wang XW, Jin M (2006) High-throughput identification of clinical pathogenic fungi by hybridization to an oligonucleotide microarray. J Clin Microbiol 44(9):3299–3305. doi: 10.1128/JCM.00417-06 CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Spiess B, Seifarth W, Hummel M, Frank O, Fabarius A, Zheng C, Morz H, Hehlmann R, Buchheidt D (2007) DNA microarray-based detection and identification of fungal pathogens in clinical samples from neutropenic patients. J Clin Microbiol 45(11):3743–3753. doi: 10.1128/JCM.00942-07 CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Lu W, Gu D, Chen X, Xiong R, Liu P, Yang N, Zhou Y (2010) Application of an oligonucleotide microarray-based nano-amplification technique for the detection of fungal pathogens. Clin Chem Lab Med 48(10):1507–1514. doi: 10.1515/CCLM.2010.284 CrossRefPubMedGoogle Scholar
  71. 71.
    Sakai K, Trabasso P, Moretti ML, Mikami Y, Kamei K, Gonoi T (2014) Identification of fungal pathogens by visible microarray system in combination with isothermal gene amplification. Mycopathologia 178(1-2):11–26. doi: 10.1007/s11046-014-9756-2 CrossRefPubMedPubMedCentralGoogle Scholar
  72. 72.
    Pfaller MA, Diekema DJ, Rinaldi MG, Barnes R, Hu B, Veselov AV, Tiraboschi N, Nagy E, Gibbs DL, Grp GAS (2005) Results from the ARTEMIS DISK global antifungal surveillance study: a 6.5-year analysis of susceptibilities of Candida and other yeast species to fluconazole and voriconazole by standardized disk diffusion testing. J Clin Microbiol 43(12):5848–5859. doi: 10.1128/Jcm.43.12.5848-5859.2005
  73. 73.
    Franz R, Kelly SL, Lamb DC, Kelly DE, Ruhnke M, Morschhauser J (1998) Multiple molecular mechanisms contribute to a stepwise development of fluconazole resistance in clinical Candida albicans strains. Antimicrob Agents Chemother 42(12):3065–3072PubMedPubMedCentralGoogle Scholar
  74. 74.
    Coste A, Selmecki A, Forche A, Diogo D, Bougnoux ME, d'Enfert C, Berman J, Sanglard D (2007) Genotypic evolution of azole resistance mechanisms in sequential Candida albicans isolates. Eukaryotic cell 6(10):1889–1904. doi: 10.1128/EC.00151-07 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Mai MK (2012) DNA-microarray for fungal species identification and monitoring of resistance-associated SNPs in Candida albicans. Fraunhofer Verlag, StuttgartGoogle Scholar
  76. 76.
    Beyda ND, Alam MJ, Garey KW (2013) Comparison of the T2Dx instrument with T2Candida assay and automated blood culture in the detection of Candida species using seeded blood samples. Diagn Microbiol Infect Dis 77(4):324–326. doi: 10.1016/j.diagmicrobio.2013.07.007
  77. 77.
    Mylonakis E, Clancy CJ, Ostrosky-Zeichner L, Garey KW, Alangaden GJ, Vazquez JA, Groeger JS, Judson MA, Vinagre YM, Heard SO, Zervou FN, Zacharioudakis IM, Kontoyiannis DP, Pappas PG (2015) T2 magnetic resonance assay for the rapid diagnosis of Candidemia in whole blood: a clinical trial. Clin Infect Dis 60(6):892–899. doi: 10.1093/cid/ciu959 CrossRefPubMedGoogle Scholar
  78. 78.
    Syvanen AC, Ikonen E, Manninen T, Bengtstrom M, Soderlund H, Aula P, Peltonen L (1992) Convenient and quantitative determination of the frequency of a mutant allele using solid-phase minisequencing: application to aspartylglucosaminuria in Finland. Genomics 12(3):590–595CrossRefPubMedGoogle Scholar
  79. 79.
    Weishaupt SU (2014) Entwicklung einer universellen DNA-basierten Array-Plattform zur verbesserten Tumorklassifizierung am Beispiel des diffus großzelligen B-Zell-Lymphoms. Fraunhofer Verlag, StuttgartGoogle Scholar
  80. 80.
    Hartmann SC (2013) Entwicklung eines DNA-Mikroarrays zur Identifizierung und Resistenzcharakterisierung Sepsis-assoziierter humanpathogener Mikroorganismen unter Anwendung der Receiver Operating Characteristic (ROC)-Analyse. Fraunhofer Verlag, StuttgartGoogle Scholar
  81. 81.
    Ahlford A, Kjeldsen B, Reimers J, Lundmark A, Romani M, Wolff A, Syvanen AC, Brivio M (2010) Dried reagents for multiplex genotyping by tag-array minisequencing to be used in microfluidic devices. Analyst 135(9):2377–2385. doi: 10.1039/c0an00321b CrossRefPubMedGoogle Scholar
  82. 82.
    Milani L, Syvanen AC (2009) Genotyping single nucleotide polymorphisms by multiplex minisequencing using tag-arrays. Methods Mol Biol 529:215–229. doi: 10.1007/978-1-59745-538-1_14 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Fraunhofer Institut für Grenzflächen- und BioverfahrenstechnikStuttgartGermany
  2. 2.Institut für Grenzflächenverfahrenstechnik und PlasmatechnologieUniversität StuttgartStuttgartGermany

Personalised recommendations