Advertisement

The Molecular Blueprint of a Fungus by Next-Generation Sequencing (NGS)

  • Christian Grumaz
  • Philipp Kirstahler
  • Kai SohnEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1508)

Abstract

Sequencing the whole genome of an organism is invaluable for its comprehensive molecular characterization and has been drastically facilitated by the advent of high-throughput sequencing techniques. Especially in clinical microbiology the impact of sequenced strains increases as resistance and virulence markers can easily be detected. Here, we describe a combined approach for sequencing a fungal genome and transcriptome from initial nucleic acid isolation through the generation of ready-to-load DNA libraries for the Illumina platform and the final step of genome assembly with subsequent gene annotation.

Key words

Next-generation sequencing (NGS) Whole-genome shotgun sequencing (WGS) RNA sequencing (RNA-seq) Fungal genome Assembly Annotation Bioinformatics 

References

  1. 1.
    Robertson M (1980) Biology in the 1980s, plus or minus a decade. Nature 285(5764):358–359CrossRefPubMedGoogle Scholar
  2. 2.
    Bentley DR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Nakazato T, Ohta T, Bono H (2013) Experimental design-based functional mining and characterization of high-throughput sequencing data in the sequence read archive. PLoS One 8(10):e77910CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Ross MG et al (2013) Characterizing and measuring bias in sequence data. Genome Biol 14(5):R51CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Eid J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138CrossRefPubMedGoogle Scholar
  7. 7.
    Clarke J et al (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270CrossRefPubMedGoogle Scholar
  8. 8.
    Istrail S et al (2004) Whole-genome shotgun assembly and comparison of human genome assemblies. Proc Natl Acad Sci U S A 101(7):1916–1921CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Myers EW et al (2000) A whole-genome assembly of Drosophila. Science 287(5461):2196–2204Google Scholar
  10. 10.
    Venter JC et al (2001) The sequence of the human genome. Science 291(5507):1304–1351CrossRefPubMedGoogle Scholar
  11. 11.
    Bruijn DN (1946) A combinatorial problem. Proc Koninklijke Nederlandse Akademie van Wetenschappen Ser A 49(7):758Google Scholar
  12. 12.
    Grumaz C et al (2013) Species and condition specific adaptation of the transcriptional landscapes in Candida albicans and Candida dubliniensis. BMC Genomics 14:212Google Scholar
  13. 13.
    Gunther M et al (2015) The transcriptomic profile of Pseudozyma aphidis during production of mannosylerythritol lipids. Appl Microbiol Biotechnol 99(3):1375–1388. doi: 10.1007/s00253-014-6359-2, Epub 2015 Jan 15
  14. 14.
    Andrews S, FastQC (2010) A quality control tool for high throughput sequence data. Ref SourceGoogle Scholar
  15. 15.
    Simpson JT et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. doi: 10.1038/nmeth.3317, Epub 2015 Mar 9CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Lomsadze A, Burns PD, Borodovsky M (2014) Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res 42(15):e119. doi: 10.1093/nar/gku557, Epub 2014 Jul 2CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Stanke M et al (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 32(Web Server issue):W309–W312CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Jones P et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240. doi: 10.1093/bioinformatics/btu031, Epub 2014 Jan 21CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Grunenwald H et al (2010) Rapid, high-throughput library preparation for next-generation sequencing. Nat Meth 7(8)Google Scholar
  22. 22.
    Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12CrossRefGoogle Scholar
  23. 23.
    Bankevich A et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Luo R et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18Google Scholar
  25. 25.
    Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829Google Scholar
  26. 26.
    Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefPubMedGoogle Scholar
  27. 27.
    English AC et al (2012) Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One 7(11):e47768. doi: 10.1371/journal.pone.0047768, Epub 2012 Nov 21CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Christian Grumaz
    • 1
  • Philipp Kirstahler
    • 1
  • Kai Sohn
    • 1
    • 2
    Email author
  1. 1.Fraunhofer Institute for Interfacial Engineering and BiotechnologyStuttgartGermany
  2. 2.Institute of Interfacial Process Engineering and Plasma TechnologyUniversity of StuttgartStuttgartGermany

Personalised recommendations