Skip to main content

The Molecular Blueprint of a Fungus by Next-Generation Sequencing (NGS)

  • Protocol
  • First Online:
Human Fungal Pathogen Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1508))

Abstract

Sequencing the whole genome of an organism is invaluable for its comprehensive molecular characterization and has been drastically facilitated by the advent of high-throughput sequencing techniques. Especially in clinical microbiology the impact of sequenced strains increases as resistance and virulence markers can easily be detected. Here, we describe a combined approach for sequencing a fungal genome and transcriptome from initial nucleic acid isolation through the generation of ready-to-load DNA libraries for the Illumina platform and the final step of genome assembly with subsequent gene annotation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Robertson M (1980) Biology in the 1980s, plus or minus a decade. Nature 285(5764):358–359

    Article  CAS  PubMed  Google Scholar 

  2. Bentley DR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74(12):5463–5467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakazato T, Ohta T, Bono H (2013) Experimental design-based functional mining and characterization of high-throughput sequencing data in the sequence read archive. PLoS One 8(10):e77910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ross MG et al (2013) Characterizing and measuring bias in sequence data. Genome Biol 14(5):R51

    Article  PubMed  PubMed Central  Google Scholar 

  6. Eid J et al (2009) Real-time DNA sequencing from single polymerase molecules. Science 323(5910):133–138

    Article  CAS  PubMed  Google Scholar 

  7. Clarke J et al (2009) Continuous base identification for single-molecule nanopore DNA sequencing. Nat Nanotechnol 4(4):265–270

    Article  CAS  PubMed  Google Scholar 

  8. Istrail S et al (2004) Whole-genome shotgun assembly and comparison of human genome assemblies. Proc Natl Acad Sci U S A 101(7):1916–1921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Myers EW et al (2000) A whole-genome assembly of Drosophila. Science 287(5461):2196–2204

    Google Scholar 

  10. Venter JC et al (2001) The sequence of the human genome. Science 291(5507):1304–1351

    Article  CAS  PubMed  Google Scholar 

  11. Bruijn DN (1946) A combinatorial problem. Proc Koninklijke Nederlandse Akademie van Wetenschappen Ser A 49(7):758

    Google Scholar 

  12. Grumaz C et al (2013) Species and condition specific adaptation of the transcriptional landscapes in Candida albicans and Candida dubliniensis. BMC Genomics 14:212

    Google Scholar 

  13. Gunther M et al (2015) The transcriptomic profile of Pseudozyma aphidis during production of mannosylerythritol lipids. Appl Microbiol Biotechnol 99(3):1375–1388. doi:10.1007/s00253-014-6359-2, Epub 2015 Jan 15

  14. Andrews S, FastQC (2010) A quality control tool for high throughput sequence data. Ref Source

    Google Scholar 

  15. Simpson JT et al (2009) ABySS: a parallel assembler for short read sequence data. Genome Res 19(6):1117–1123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kim D, Langmead B, Salzberg SL (2015) HISAT: a fast spliced aligner with low memory requirements. Nat Methods 12(4):357–360. doi:10.1038/nmeth.3317, Epub 2015 Mar 9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Lomsadze A, Burns PD, Borodovsky M (2014) Integration of mapped RNA-Seq reads into automatic training of eukaryotic gene finding algorithm. Nucleic Acids Res 42(15):e119. doi:10.1093/nar/gku557, Epub 2014 Jul 2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Stanke M et al (2004) AUGUSTUS: a web server for gene finding in eukaryotes. Nucleic Acids Res 32(Web Server issue):W309–W312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Altschul SF et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25(17):3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Jones P et al (2014) InterProScan 5: genome-scale protein function classification. Bioinformatics 30(9):1236–1240. doi:10.1093/bioinformatics/btu031, Epub 2014 Jan 21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Grunenwald H et al (2010) Rapid, high-throughput library preparation for next-generation sequencing. Nat Meth 7(8)

    Google Scholar 

  22. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17(1):10–12

    Article  Google Scholar 

  23. Bankevich A et al (2012) SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19(5):455–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Luo R et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascience 1(1):18

    Google Scholar 

  25. Zerbino DR, Birney E (2008) Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18(5):821–829

    Google Scholar 

  26. Lander ES et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    Article  CAS  PubMed  Google Scholar 

  27. English AC et al (2012) Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS One 7(11):e47768. doi:10.1371/journal.pone.0047768, Epub 2012 Nov 21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Sohn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Grumaz, C., Kirstahler, P., Sohn, K. (2017). The Molecular Blueprint of a Fungus by Next-Generation Sequencing (NGS). In: Lion, T. (eds) Human Fungal Pathogen Identification. Methods in Molecular Biology, vol 1508. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6515-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6515-1_21

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6513-7

  • Online ISBN: 978-1-4939-6515-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics