Advertisement

Immunological Identification of Fungal Species

  • Filomena Nogueira
  • Fabian Istel
  • Leonel Pereira
  • Michael Tscherner
  • Karl KuchlerEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1508)

Abstract

Immunodetection is described in this chapter as a technique for producing specific antibodies for antigen detection of the major human fungal pathogens. In the case of Candida spp., heat-killed cells are used to immunize mice over a couple of weeks and then splenocytes are isolated and further fused with myelomas to easily propagate the antibodies produced in the mice. The resulting antibodies follow a purification process where antibody levels and concentrations are determined. Fungal cells are also lysed to obtain whole cell extracts as a prior step for identification of antigens using immunoprecipitation. Finally, this method permits the production of specific antibodies against fungi and the identification of the respective antigens in an in vivo model.

Key words

Immunodetection Antibodies Antigens Candida Aspergillus Zygomycetes Mucor Rhizopus Fusarium Cryptococcus 

Notes

Acknowledgement

This work was supported by the European Union project FP7 “FUNGITECT” [602125] and FP7 Marie-Curie Initial Training Network “ImResFun” [MC-ITN-606786]. We also thank Andriy Petryshyn for technical support, Florian Zwolanek for helpful insights on immunization of mice, the Monoclonal Antibody Facility (MAF) at the Campus Vienna Biocenter (VBC) in Vienna, and Thomas Lion at the Children’s Cancer Research Institute (CCRI) for his suggestions and guidance.

References

  1. 1.
    Latge JP, Debeaupuis JP, Sarfati J et al (1993) Cell wall antigens in Aspergillus fumigatus. Arch Med Res 24:269–274Google Scholar
  2. 2.
    Notermans S, Soentoro PS (1986) Immunological relationship of extra-cellular polysaccharide antigens produced by different mould species. Antonie Van Leeuwenhoek 52:393–401CrossRefPubMedGoogle Scholar
  3. 3.
    Vojdani A (2004) Cross-reactivity of Aspergillus, Penicillium, and Stachybotrys antigens using affinity-purified antibodies and immunoassay. Arch Environ Health 59:256–265Google Scholar
  4. 4.
    Kaufman L, Standard PG, Anderson SA et al (1995) Development of specific fluorescent-antibody test for tissue form of Penicillium marneffei. J Clin Microbiol 33:2136–2138Google Scholar
  5. 5.
    Kaufman L, Standard PG, Jalbert M et al (1997) Immunohistologic identification of Aspergillus spp. and other hyaline fungi by using polyclonal fluorescent antibodies. J Clin Microbiol 35:2206–2209Google Scholar
  6. 6.
    Schmechel D, Green BJ, Blachere FM et al (2008) Analytical bias of cross-reactive polyclonal antibodies for environmental immunoassays of Alternaria alternata. J Allergy Clin Immunol 121:763–768Google Scholar
  7. 7.
    Kohler G, Milstein C (2005) Continuous cultures of fused cells secreting antibody of predefined specificity. 1975. J Immunol 174:2453–2455PubMedGoogle Scholar
  8. 8.
    Richardson MD, White LO, Warren RC (1979) Detection of circulating antigen of Aspergillus fumigatus in sera of mice and rabbits by enzyme-linked immunosorbent assay. Mycopathologia 67:83–88Google Scholar
  9. 9.
    Thornton CR (2010) Detection of invasive aspergillosis. Adv Appl Microbiol 70:187–216CrossRefPubMedGoogle Scholar
  10. 10.
    Thornton CR (2008) Development of an immunochromatographic lateral-flow device for rapid serodiagnosis of invasive aspergillosis. Clin Vaccine Immunol 15:1095–1105CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Thornton CR (2009) Tracking the emerging human pathogen Pseudallescheria boydii by using highly specific monoclonal antibodies. Clin Vaccine Immunol 16:756–764Google Scholar
  12. 12.
    Ra C (2002) Introduction and historical perspectives, Candida and Candidiasis. ASM Press, Washington, DCGoogle Scholar
  13. 13.
    Arendrup MC, Sulim S, Holm A et al (2011) Diagnostic issues, clinical characteristics, and outcomes for patients with fungemia. J Clin Microbiol 49:3300–3308CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Cleveland AA, Harrison LH, Farley MM et al (2015) Declining incidence of candidemia and the shifting epidemiology of Candida resistance in two US metropolitan areas, 2008-2013: results from population-based surveillance. PLoS One 10Google Scholar
  15. 15.
    Pfaller MA, Moet GJ, Messer SA et al (2011) Candida bloodstream infections: comparison of species distributions and antifungal resistance patterns in community-onset and nosocomial isolates in the SENTRY Antimicrobial Surveillance Program, 2008-2009. Antimicrob Agents Chemother 55:561–566Google Scholar
  16. 16.
    Wisplinghoff H, Bischoff T, Tallent SM et al (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317CrossRefPubMedGoogle Scholar
  17. 17.
    Clancy CJ, Nguyen MH (2013) Finding the “missing 50 %” of invasive candidiasis: how nonculture diagnostics will improve understanding of disease spectrum and transform patient care. Clin Infect Dis 56:1284–1292CrossRefPubMedGoogle Scholar
  18. 18.
    Lamoth F, Cruciani M, Mengoli C et al (2012) beta-Glucan antigenemia assay for the diagnosis of invasive fungal infections in patients with hematological malignancies: a systematic review and meta-analysis of cohort studies from the Third European Conference on Infections in Leukemia (ECIL-3). Clin Infect Dis 54:633–643CrossRefPubMedGoogle Scholar
  19. 19.
    Marr KA, Laverdiere M, Gugel A et al (2005) Antifungal therapy decreases sensitivity of the Aspergillus galactomannan enzyme immunoassay. Clin Infect Dis 40:1762–1769CrossRefPubMedGoogle Scholar
  20. 20.
    Morrissey CO (2013) Advancing the field: evidence for new management strategies in invasive fungal infections. Curr Fungal Infect Rep 7:51–58CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Saez-Roson A, Sevilla MJ, Moragues MD (2014) Identification of superficial Candida albicans germ tube antigens in a rabbit model of disseminated candidiasis. A proteomic approach. Int Microbiol 17:21–29Google Scholar
  22. 22.
    Kanehisa M, Goto S, Sato Y et al (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42:D199–D205CrossRefPubMedGoogle Scholar
  23. 23.
    Pitarch A, Sanchez M, Nombela C et al (2002) Sequential fractionation and two-dimensional gel analysis unravels the complexity of the dimorphic fungus Candida albicans cell wall proteome. Mol Cell Proteomics 1:967–982CrossRefPubMedGoogle Scholar
  24. 24.
    Crowe JD, Sievwright IK, Auld GC et al (2003) Candida albicans binds human plasminogen: identification of eight plasminogen-binding proteins. Mol Microbiol 47:1637–1651CrossRefPubMedGoogle Scholar
  25. 25.
    Jong AY, Chen SH, Stins MF et al (2003) Binding of Candida albicans enolase to plasmin(ogen) results in enhanced invasion of human brain microvascular endothelial cells. J Med Microbiol 52:615–622CrossRefPubMedGoogle Scholar
  26. 26.
    Suliman HS, Appling DR, Robertus JD (2007) The gene for cobalamin-independent methionine synthase is essential in Candida albicans: a potential antifungal target. Arch Biochem Biophys 467:218–226CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Chen YL, Kauffman S, Reynolds TB (2008) Candida albicans uses multiple mechanisms to acquire the essential metabolite inositol during infection. Infect Immun 76:2793–2801CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Cognetti D, Davis D, Sturtevant J (2002) The Candida albicans 14-3-3 gene, BMH1, is essential for growth. Yeast 19:55–67CrossRefPubMedGoogle Scholar
  29. 29.
    Nobile CJ, Fox EP, Nett JE et al (2012) A recently evolved transcriptional network controls biofilm development in Candida albicans. Cell 148:126–138CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Chen QK, Jiang GN, Ding JA (2012) Surgical treatment for pulmonary aspergilloma: a 35-year experience in the Chinese population. Interact Cardiovasc Thorac Surg 15:77–80CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ohba H, Miwa S, Shirai M et al (2012) Clinical characteristics and prognosis of chronic pulmonary aspergillosis. Respir Med 106:724–729CrossRefPubMedGoogle Scholar
  32. 32.
    Smith NL, Denning DW (2011) Underlying conditions in chronic pulmonary aspergillosis including simple aspergilloma. Eur Respir J 37:865–872CrossRefPubMedGoogle Scholar
  33. 33.
    Jhun BW, Jeon K, Eom JS et al (2013) Clinical characteristics and treatment outcomes of chronic pulmonary aspergillosis. Med Mycol 51:811–817CrossRefPubMedGoogle Scholar
  34. 34.
    Denning DW, Pleuvry A, Cole DC (2013) Global burden of allergic bronchopulmonary aspergillosis with asthma and its complication chronic pulmonary aspergillosis in adults. Med Mycol 51:361–370CrossRefPubMedGoogle Scholar
  35. 35.
    Denning DW, Pleuvry A, Cole DC (2011) Global burden of chronic pulmonary aspergillosis as a sequel to pulmonary tuberculosis. Bull World Health Organ 89:864–872CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Denning DW, Pleuvry A, Cole DC (2013) Global burden of chronic pulmonary aspergillosis complicating sarcoidosis. Eur Respir J 41:621–626CrossRefPubMedGoogle Scholar
  37. 37.
    Bonifaz A, Cruz-Aguilar P, Ponce RM (2007) Onychomycosis by moulds. Report of 78 cases. Eur J Dermatol 17:70–72Google Scholar
  38. 38.
    Gianni C, Cerri A, Crosti C (2000) Non-dermatophytic onychomycosis. An understimated entity? A study of 51 cases. Mycoses 43:29–33CrossRefPubMedGoogle Scholar
  39. 39.
    Tarazi AE, Al-Tawfiq JA, Abdi RF (2012) Fungal malignant otitis externa: pitfalls, diagnosis, and treatment. Otol Neurotol 33:769–773CrossRefPubMedGoogle Scholar
  40. 40.
    Thomas PA, Kaliamurthy J (2013) Mycotic keratitis: epidemiology, diagnosis and management. Clin Microbiol Infect 19:210–220CrossRefPubMedGoogle Scholar
  41. 41.
    Denning DW (1998) Invasive aspergillosis. Clin Infect Dis 26:781–803CrossRefPubMedGoogle Scholar
  42. 42.
    Page ID, Richardson M, Denning DW (2015) Antibody testing in aspergillosis—quo vadis? Med Mycol 53:417–439CrossRefPubMedGoogle Scholar
  43. 43.
    Kurup VP (2005) Aspergillus antigens: which are important? Med Mycol 43:S189–S196Google Scholar
  44. 44.
    Levy H, Horak DA, Tegtmeier BR et al (1992) The value of bronchoalveolar lavage and bronchial washings in the diagnosis of invasive pulmonary aspergillosis. Respir Med 86:243–248CrossRefPubMedGoogle Scholar
  45. 45.
    Agarwal R (2009) Allergic bronchopulmonary aspergillosis. Chest 135:805–826CrossRefPubMedGoogle Scholar
  46. 46.
    Denning DW, Riniotis K, Dobrashian R et al (2003) Chronic cavitary and fibrosing pulmonary and pleural aspergillosis: case series, proposed nomenclature change, and review. Clin Infect Dis 1:S265–S280CrossRefGoogle Scholar
  47. 47.
    Thornton C, Johnson G, Agrawal S (2012) Detection of invasive pulmonary aspergillosis in haematological malignancy patients by using lateral-flow technology. J Vis Exp 22Google Scholar
  48. 48.
    Thornton CR, Wills OE (2015) Immunodetection of fungal and oomycete pathogens: established and emerging threats to human health, animal welfare and global food security. Crit Rev Microbiol 41:27–51CrossRefPubMedGoogle Scholar
  49. 49.
    Wiederhold NP, Thornton CR, Najvar LK et al (2009) Comparison of lateral flow technology and galactomannan and (1- > 3)-beta-D-glucan assays for detection of invasive pulmonary aspergillosis. Clin Vaccine Immunol 16:1844–1846CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Dufresne SF, Datta K, Li X et al (2012) Detection of urinary excreted fungal galactomannan-like antigens for diagnosis of invasive aspergillosis. PLoS One 7:10CrossRefGoogle Scholar
  51. 51.
    Agarwal R, Chakrabarti A, Shah A et al (2013) Allergic bronchopulmonary aspergillosis: review of literature and proposal of new diagnostic and classification criteria. Clin Exp Allergy 43:850–873CrossRefPubMedGoogle Scholar
  52. 52.
    Barton RC, Hobson RP, Denton M et al (2008) Serologic diagnosis of allergic bronchopulmonary aspergillosis in patients with cystic fibrosis through the detection of immunoglobulin G to Aspergillus fumigatus. Diagn Microbiol Infect Dis 62:287–291CrossRefPubMedGoogle Scholar
  53. 53.
    Baxter CG, Denning DW, Jones AM et al (2013) Performance of two Aspergillus IgG EIA assays compared with the precipitin test in chronic and allergic aspergillosis. Clin Microbiol Infect 19:E197–E204Google Scholar
  54. 54.
    Guitard J, Sendid B, Thorez S et al (2012) Evaluation of a recombinant antigen-based enzyme immunoassay for the diagnosis of noninvasive aspergillosis. J Clin Microbiol 50:762–765CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Van Hoeyveld E, Dupont L, Bossuyt X (2006) Quantification of IgG antibodies to Aspergillus fumigatus and pigeon antigens by ImmunoCAP technology: an alternative to the precipitation technique? Clin Chem 52:1785–1793CrossRefPubMedGoogle Scholar
  56. 56.
    Richardson MD, Stubbins JM, Warnock DW (1982) Rapid enzyme-linked immunosorbent assay (ELISA) for Aspergillus fumigatus antibodies. J Clin Pathol 35:1134–1137CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sepulveda R, Longbottom JL, Pepys J (1979) Enzyme linked immunosorbent assay (ELISA) for IgG and IgE antibodies to protein and polysaccharide antigens of Aspergillus fumigatus. Clin Allergy 9:359–371CrossRefPubMedGoogle Scholar
  58. 58.
    Chan CM, Woo PC, Leung AS et al (2002) Detection of antibodies specific to an antigenic cell wall galactomannoprotein for serodiagnosis of Aspergillus fumigatus aspergillosis. J Clin Microbiol 40:2041–2045CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Chumpitazi BF, Pinel C, Lebeau B et al (2000) Aspergillus fumigatus antigen detection in sera from patients at risk for invasive aspergillosis. J Clin Microbiol 38:438–443PubMedPubMedCentralGoogle Scholar
  60. 60.
    Klont RR, Mennink-Kersten MA, Verweij PE (2004) Utility of Aspergillus antigen detection in specimens other than serum specimens. Clin Infect Dis 39:1467–1474Google Scholar
  61. 61.
    Viscoli C, Machetti M, Gazzola P et al (2002) Aspergillus galactomannan antigen in the cerebrospinal fluid of bone marrow transplant recipients with probable cerebral aspergillosis. J Clin Microbiol 40:1496–1499Google Scholar
  62. 62.
    Thornton CR, Pitt D, Wakley GE et al (2002) Production of a monoclonal antibody specific to the genus Trichoderma and closely related fungi, and its use to detect Trichoderma spp. in naturally infested composts. Microbiology 148:1263–1279CrossRefPubMedGoogle Scholar
  63. 63.
    Thornton CR, Slaughter DC, Davis RM (2010) Detection of the sour-rot pathogen Geotrichum candidum in tomato fruit and juice by using a highly specific monoclonal antibody-based ELISA. Int J Food Microbiol 143:166–172Google Scholar
  64. 64.
    Ridder R, Schmitz R, Legay F et al (1995) Generation of rabbit monoclonal antibody fragments from a combinatorial phage display library and their production in the yeast Pichia pastoris. Biotechnology 13:255–260Google Scholar
  65. 65.
    Schmechel D, Gorny RL, Simpson JP et al (2003) Limitations of monoclonal antibodies for monitoring of fungal aerosols using Penicillium brevicompactum as a model fungus. J Immunol Methods 283:235–245Google Scholar
  66. 66.
    Hirschi S, Letscher-Bru V, Pottecher J et al (2012) Disseminated Trichosporon mycotoxinivorans, Aspergillus fumigatus, and Scedosporium apiospermum coinfection after lung and liver transplantation in a cystic fibrosis patient. J Clin Microbiol 50:4168–4170Google Scholar
  67. 67.
    Koga T, Kitajima T, Tanaka R et al (2005) Chronic pulmonary scedosporiosis simulating aspergillosis. Respirology 10:682–684CrossRefPubMedGoogle Scholar
  68. 68.
    Lam SM, Lau AC, Ma MW et al (2008) Pseudallescheria boydii or Aspergillus fumigatus in a lady with an unresolving lung infiltrate, and a literature review. Respirology 13:478–480Google Scholar
  69. 69.
    Woo PC, Chan CM, Leung AS et al (2002) Detection of cell wall galactomannoprotein Afmp1p in culture supernatants of Aspergillus fumigatus and in sera of aspergillosis patients. J Clin Microbiol 40:4382–4387CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    De Pauw B, Walsh TJ, Donnelly JP et al (2008) Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 46:1813–1821CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Schuetz AN (2013) Invasive fungal infections: biomarkers and molecular approaches to diagnosis. Clin Lab Med 33:505–525CrossRefPubMedGoogle Scholar
  72. 72.
    O’donnell K, Sutton DA, Rinaldi MG et al (2010) Internet-accessible DNA sequence database for identifying fusaria from human and animal infections. J Clin Microbiol 48:3708–3718CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Perfect JR, Bicanic T (2015) Cryptococcosis diagnosis and treatment: what do we know now. Fungal Genet Biol 78:49–54CrossRefPubMedGoogle Scholar
  74. 74.
    Lui G, Lee N, Ip M et al (2006) Cryptococcosis in apparently immunocompetent patients. QJM 99:143–151CrossRefPubMedGoogle Scholar
  75. 75.
    Mitchell TG, Perfect JR (1995) Cryptococcosis in the era of AIDS—100 years after the discovery of Cryptococcus neoformans. Clin Microbiol Rev 8:515–548Google Scholar
  76. 76.
    Yuanjie Z, Jianghan C, Nan X et al (2012) Cryptococcal meningitis in immunocompetent children. Mycoses 55:168–171PubMedGoogle Scholar
  77. 77.
    Antachopoulos C, Walsh TJ (2012) Immunotherapy of Cryptococcus infections. Clin Microbiol Infect 18:126–133Google Scholar
  78. 78.
    Yi HA, Panepinto JC, Jacobs A (2012) Inhibition of HIV entry by extracellular glucuronoxylomannan of Cryptococcus neoformans. Microb Pathog 52:25–30CrossRefPubMedGoogle Scholar
  79. 79.
    Bose I, Reese AJ, Ory JJ et al (2003) A yeast under cover: the capsule of Cryptococcus neoformans. Eukaryot Cell 2:655–663CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Mcfadden DC, De Jesus M, Casadevall A (2006) The physical properties of the capsular polysaccharides from Cryptococcus neoformans suggest features for capsule construction. J Biol Chem 281:1868–1875CrossRefPubMedGoogle Scholar
  81. 81.
    Teixeira PA, Penha LL, Mendonca-Previato L et al (2014) Mannoprotein MP84 mediates the adhesion of Cryptococcus neoformans to epithelial lung cells. Front Cell Infect Microbiol 4:106CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Zaragoza O, Rodrigues ML, De Jesus M et al (2009) The capsule of the fungal pathogen Cryptococcus neoformans. Adv Appl Microbiol 68:133–216CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Frases S, Pontes B, Nimrichter L et al (2009) Capsule of Cryptococcus neoformans grows by enlargement of polysaccharide molecules. Proc Natl Acad Sci U S A 106:1228–1233CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Belay T, Cherniak R (1995) Determination of antigen binding specificities of Cryptococcus neoformans factor sera by enzyme-linked immunosorbent assay. Infect Immun 63:1810–1819PubMedPubMedCentralGoogle Scholar
  85. 85.
    Brandt S, Thorkildson P, Kozel TR (2003) Monoclonal antibodies reactive with immunorecessive epitopes of glucuronoxylomannan, the major capsular polysaccharide of Cryptococcus neoformans. Clin Diagn Lab Immunol 10:903–909PubMedPubMedCentralGoogle Scholar
  86. 86.
    Dromer F, Salamero J, Contrepois A et al (1987) Production, characterization, and antibody specificity of a mouse monoclonal antibody reactive with Cryptococcus neoformans capsular polysaccharide. Infect Immun 55:742–748PubMedPubMedCentralGoogle Scholar
  87. 87.
    Eckert TF, Kozel TR (1987) Production and characterization of monoclonal antibodies specific for Cryptococcus neoformans capsular polysaccharide. Infect Immun 55:1895–1899PubMedPubMedCentralGoogle Scholar
  88. 88.
    Spiropulu C, Eppard RA, Otteson E et al (1989) Antigenic variation within serotypes of Cryptococcus neoformans detected by monoclonal antibodies specific for the capsular polysaccharide. Infect Immun 57:3240–3242PubMedPubMedCentralGoogle Scholar
  89. 89.
    Todaro-Luck F, Reiss E, Cherniak R et al (1989) Characterization of Cryptococcus neoformans capsular glucuronoxylomannan polysaccharide with monoclonal antibodies. Infect Immun 57:3882–3887PubMedPubMedCentralGoogle Scholar
  90. 90.
    Todaro-Luck F, White EH, Reiss E et al (1989) Immunoelectronmicroscopic characterization of monoclonal antibodies (MAbs) against Cryptococcus neoformans. Mol Cell Probes 3:345–361CrossRefPubMedGoogle Scholar
  91. 91.
    Hansen J, Slechta ES, Gates-Hollingsworth MA et al (2013) Large-scale evaluation of the immuno-mycologics lateral flow and enzyme-linked immunoassays for detection of cryptococcal antigen in serum and cerebrospinal fluid. Clin Vaccine Immunol 20:52–55CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Chayakulkeeree M, Ghannoum MA, Perfect JR (2006) Zygomycosis: the re-emerging fungal infection. Eur J Clin Microbiol Infect Dis 25:215–229CrossRefPubMedGoogle Scholar
  93. 93.
    Prabhu RM, Patel R (2004) Mucormycosis and entomophthoramycosis: a review of the clinical manifestations, diagnosis and treatment. Clin Microbiol Infect 1:31–47CrossRefGoogle Scholar
  94. 94.
    Spellberg B, Edwards J Jr, Ibrahim A (2005) Novel perspectives on mucormycosis: pathophysiology, presentation, and management. Clin Microbiol Rev 18:556–569CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Roden MM, Zaoutis TE, Buchanan WL et al (2005) Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis 41:634–653CrossRefPubMedGoogle Scholar
  96. 96.
    Rogers TR (2008) Treatment of zygomycosis: current and new options. J Antimicrob Chemother 61Google Scholar
  97. 97.
    Richardson M, Lass-Florl C (2008) Changing epidemiology of systemic fungal infections. Clin Microbiol Infect 4:5–24CrossRefGoogle Scholar
  98. 98.
    Chamilos G, Marom EM, Lewis RE et al (2005) Predictors of pulmonary zygomycosis versus invasive pulmonary aspergillosis in patients with cancer. Clin Infect Dis 41:60–66CrossRefPubMedGoogle Scholar
  99. 99.
    Chamilos G, Luna M, Lewis RE et al (2006) Invasive fungal infections in patients with hematologic malignancies in a tertiary care cancer center: an autopsy study over a 15-year period (1989-2003). Haematologica 91:986–989PubMedGoogle Scholar
  100. 100.
    Jez JM, Penning TM (2001) The aldo-keto reductase (AKR) superfamily: an update. Chem Biol Interact 132:499–525CrossRefGoogle Scholar
  101. 101.
    Schimek C, Petzold A, Schultze K et al (2005) 4-Dihydromethyltrisporate dehydrogenase, an enzyme of the sex hormone pathway in Mucor mucedo, is constitutively transcribed but its activity is differently regulated in (+) and (−) mating types. Fungal Genet Biol 42:804–812Google Scholar
  102. 102.
    Boutati EI, Anaissie EJ (1997) Fusarium, a significant emerging pathogen in patients with hematologic malignancy: ten years’ experience at a cancer center and implications for management. Blood 90:999–1008Google Scholar
  103. 103.
    Dignani MC, Anaissie E (2004) Human fusariosis. Clin Microbiol Infect 1:67–75CrossRefGoogle Scholar
  104. 104.
    Nucci M, Anaissie E (2007) Fusarium infections in immunocompromised patients. Clin Microbiol Rev 20:695–704Google Scholar
  105. 105.
    Van Diepeningen AD, Feng P, Ahmed S et al (2015) Spectrum of Fusarium infections in tropical dermatology evidenced by multilocus sequencing typing diagnostics. Mycoses 58:48–57Google Scholar
  106. 106.
    Zhang N, O’donnell K, Sutton DA et al (2006) Members of the Fusarium solani species complex that cause infections in both humans and plants are common in the environment. J Clin Microbiol 44:2186–2190Google Scholar
  107. 107.
    Fanci R, Pini G, Bartolesi AM et al (2013) Refractory disseminated fusariosis by Fusarium verticillioides in a patient with acute myeloid leukaemia relapsed after allogeneic hematopoietic stem cell transplantation: a case report and literature review. Rev Iberoam Micol 30:51–53CrossRefPubMedGoogle Scholar
  108. 108.
    Letscher-Bru V, Campos F, Waller J et al (2002) Successful outcome of treatment of a disseminated infection due to Fusarium dimerum in a leukemia patient. J Clin Microbiol 40:1100–1102Google Scholar
  109. 109.
    O’donnell K, Gueidan C, Sink S et al (2009) A two-locus DNA sequence database for typing plant and human pathogens within the Fusarium oxysporum species complex. Fungal Genet Biol 46:936–948Google Scholar
  110. 110.
    O’donnell K, Sutton DA, Rinaldi MG et al (2009) Novel multilocus sequence typing scheme reveals high genetic diversity of human pathogenic members of the Fusarium incarnatum-F. equiseti and F. chlamydosporum species complexes within the United States. J Clin Microbiol 47:3851–3861Google Scholar
  111. 111.
    Jensen HE, Schonheyder HC, Hotchi M et al (1996) Diagnosis of systemic mycoses by specific immunohistochemical tests. Apmis 104:241–258CrossRefPubMedGoogle Scholar
  112. 112.
    Galfrè G, Milstein C (1981) Preparation of monoclonal antibodies: strategies and procedures. In: Methods in enzymology. Academic Press, pp 3–46Google Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Filomena Nogueira
    • 1
    • 2
    • 3
  • Fabian Istel
    • 3
  • Leonel Pereira
    • 1
    • 2
    • 3
  • Michael Tscherner
    • 3
  • Karl Kuchler
    • 3
    Email author
  1. 1.CCRI—Children’s Cancer Research InstituteViennaAustria
  2. 2.Labdia—Labordiagnostik GmbHViennaAustria
  3. 3.Max F. Perutz Laboratories, MFPL—Department of Medical BiochemistryMedical University of ViennaViennaAustria

Personalised recommendations