Skip to main content

Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast

  • Protocol
  • First Online:
Book cover Human Fungal Pathogen Identification

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1508))

Abstract

Rapid and robust high-throughput identification of environmental, industrial, or clinical yeast isolates is important whenever relatively large numbers of samples need to be processed in a cost-efficient way. Nuclear magnetic resonance (NMR) spectroscopy generates complex data based on metabolite profiles, chemical composition and possibly on medium consumption, which can not only be used for the assessment of metabolic pathways but also for accurate identification of yeast down to the subspecies level. Initial results on NMR based yeast identification where comparable with conventional and DNA-based identification. Potential advantages of NMR spectroscopy in mycological laboratories include not only accurate identification but also the potential of automated sample delivery, automated analysis using computer-based methods, rapid turnaround time, high throughput, and low running costs.

We describe here the sample preparation, data acquisition and analysis for NMR-based yeast identification. In addition, a roadmap for the development of classification strategies is given that will result in the acquisition of a database and analysis algorithms for yeast identification in different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sorrell TC, Himmelreich U (2008) The role of nuclear magnetic resonance in medical mycology. Curr Fungal Infect Rep 2:149–156

    Article  Google Scholar 

  2. Pavlovic M, Mewes A, Maggipinto M et al (2014) MALDI-TOF MS based identification of food-borne yeast isolates. J Microbiol Methods 106:123–128

    Article  CAS  PubMed  Google Scholar 

  3. Croxatto A, Prod'hom G, Greub G (2012) Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev 36:380–407

    Article  CAS  PubMed  Google Scholar 

  4. Himmelreich U, Somorjai RL, Dolenko B et al (2003) Rapid identification of Candida species by using nuclear magnetic resonance spectroscopy and a statistical classification strategy. Appl Environ Microbiol 69:4566–4574

    Google Scholar 

  5. Allen JK, Davey HM, Broadhurst D et al (2003) High-throughput characterisation of yeast mutants for functional genomics using metabolic footprinting. Nat Biotechnol 21:692–696

    Article  CAS  PubMed  Google Scholar 

  6. Maquelin K, Kirschner C, Choo-Smith LP et al (2002) Identification of medically relevant microorganisms by vibrational spectroscopy. J Microbiol Methods 51:255–271

    Article  CAS  PubMed  Google Scholar 

  7. Dunn WB, Bailey NJC, Johnson HE (2005) Measuring the metabolome: current analytical technologies. Analyst 130:606–625

    Article  CAS  PubMed  Google Scholar 

  8. Pope GA, MacKenzie DA, Defernez M et al (2007) Metabolic footprinting as a tool for discriminating between brewing yeasts. Yeast 24:667–679

    Article  CAS  PubMed  Google Scholar 

  9. Himmelreich U, Somorjai RL, Dolenko B et al (2005) A Rapid screening test to distinguish between Candida albicans and Candida dubliniensis using NMR Spectroscopy. FEMS Microbiol Lett 251:327–332

    Google Scholar 

  10. Marklein G, Josten M, Klanke U et al (2009) J Clin Microbiol 47:2912–2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. van Veen SQ, Claas EC, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bizzini A, Greub G (2010) Matrix-assisted laser desorption ionization-time of flight mass spectrometry, a revolution in clinical microbial identification. Clin Microbiol Infect 16:1614–1619

    Article  CAS  PubMed  Google Scholar 

  13. Urbanczyk-Wochniak E, Luedemann A, Kopka J (2003) Parallel analysis of transcript and metabolic profiles: a new approach in systems biology. EMBO Rep 4:989–993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Himmelreich U, Mountford CE, Sorrell TC (2004) NMR spectroscopic determination of microbiological profiles in infectious diseases. Trends Appl Spectrosc 5:269–283

    CAS  Google Scholar 

  15. Gupta RK, Lufkin RB (2002) MR imaging and spectroscopy of central nervous system infection. Kluwer Academic Publisher, New York

    Google Scholar 

  16. Sorrell TC, Wright LC, Malik R et al (2006) Application of proton nuclear magnetic resonance spectroscopy to the study of Cryptococcus and cryptococcosis. FEMS Yeast Res 6:558–566

    Google Scholar 

  17. Nath K, Agarwal M, Ramola M et al (2009) Role of diffusion tensor imaging metrics and in vivo proton magnetic resonance spectroscopy in the differential diagnosis of cystic intracranial mass lesions. Magn Reson Imaging 27:198–206

    Google Scholar 

  18. Coen M, Bodkin J, Power D et al (2006) Antifungal effects on metabolite profiles of medically important yeast species measured by nuclear magnetic resonance spectroscopy. Antimicrob Agents Chemother 50:4018–4026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Himmelreich U, Malik R, Kühn T et al (2009) Rapid etiological classification of meningitis by NMR spectroscopy based on metabolite profiles and host response. PLoS One 4:e5328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Coen M, O’Sullivan M, Bubb WA et al (2005) Proton nuclear magnetic resonance-based metabonomics for rapid diagnosis of meningitis and ventriculitis. Clin Infect Dis 41:1582–1590

    Article  CAS  PubMed  Google Scholar 

  21. Nicholson JK, Wilson ID (1989) High resolution proton magnetic resonance spectroscopy of biological fluids. In: Emsley JW, Feeney J (eds) Progress in nuclear magnetic resonance spectroscopy. Pergamon Press, Oxford, pp 449–501

    Google Scholar 

  22. Nikulin A, Dolenko B, Bezabeh T et al (1998) Near-optimal region selection for feature space reduction: novel preprocessing methods for classifying MR spectra. NMR Biomed 11:209–217

    Article  CAS  PubMed  Google Scholar 

  23. Menze B, Kelm M, Masuch R et al (2009) A comparison of random forest and its Gini importance with standard chemometric methods for a feature selection and classification of spectral data. BMC Bioinformatics 10:1–16

    Article  CAS  Google Scholar 

  24. Croitor-Sava A, Beck V, Sandaite I et al (2015) High resolution 1H NMR spectroscopy discriminates amniotic fluid of fetuses with congenital diaphragmatic hernia from healthy controls. J Proteome Res 14:4502–4510

    Article  CAS  PubMed  Google Scholar 

  25. Baumgartner R, Somorjai RL, Bowman C et al (2004) Unsupervised feature dimension reduction for classification of MR spectra. Magn Reson Imaging 22:251–256

    Article  CAS  PubMed  Google Scholar 

  26. Somorjai RL (2009) Creating robust, reliable, clinically relevant classifiers from spectroscopic data. Biophys Rev 1:201–211

    Article  Google Scholar 

  27. Somorjai RL (2008) Pattern recognition approaches for classifying proteomic mass spectra of biofluids. Methods Mol Biol 428:383–395

    Article  CAS  PubMed  Google Scholar 

  28. Janssens D, Arahal DR, Bizet C et al (2010) The role of public biological resource centers in providing a basic infrastructure for microbial research. Res Microbiol 161:422–429

    Article  PubMed  Google Scholar 

  29. Daniel HM, Himmelreich U, Dedeurwaerdere T (2006) Integrating different windows on reality: socio-economic and institutional challenges for culture collections. Int Soc Sci J 188:369–380

    Article  Google Scholar 

  30. Jain AK, Chandrasekaran B (1982) Dimensionality and sample size considerations in pattern recognition practice. North Holland Publishing, Amsterdam

    Book  Google Scholar 

  31. O’Mahony M (1987) Sensory evaluation of food: statistical methods and procedures. Marcel Dekker Cop, New York, p 487

    Google Scholar 

  32. Hollander M, Wolfe DA (1973) Nonparametric statistical methods. Wiley, New York

    Google Scholar 

  33. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7:179–188

    Article  Google Scholar 

  34. Pearson K (1901) On lines and planes of closest fit to systems of points in space. Phil Mag 2:559–572

    Article  Google Scholar 

  35. Borg I, Groenen PJF (2005) Modern multidimensional scaling: theory and applications. Springer, New York

    Google Scholar 

  36. Efron B, Tibshirani R (1993) An introduction to the bootstrap. Chapman Hill, New York

    Book  Google Scholar 

  37. Bourne R, Himmelreich U, Sharma A et al (2001) Identification of Enterococcus, Streptococcus and Staphylococcus by multivariate analysis of proton magnetic resonance spectroscopic data from plate cultures. J Clin Microbiol 39:2916–2923

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uwe Himmelreich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Himmelreich, U., Sorrell, T.C., Daniel, HM. (2017). Nuclear Magnetic Resonance Spectroscopy-Based Identification of Yeast. In: Lion, T. (eds) Human Fungal Pathogen Identification. Methods in Molecular Biology, vol 1508. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6515-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6515-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6513-7

  • Online ISBN: 978-1-4939-6515-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics