Advertisement

Broad-Spectrum Molecular Detection of Fungal Nucleic Acids by PCR-Based Amplification Techniques

  • Stefan Czurda
  • Thomas LionEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1508)

Abstract

Over the past decade, the incidence of life-threatening invasive fungal infections has dramatically increased. Infections caused by hitherto rare and emerging fungal pathogens are associated with significant morbidity and mortality among immunocompromised patients. These observations render the coverage of a broad range of clinically relevant fungal pathogens highly important. The so-called panfungal or, perhaps more correctly, broad-range nucleic acid amplification techniques do not only facilitate sensitive detection of all clinically relevant fungal species but are also rapid and can be applied to analyses of any patient specimens. They have therefore become valuable diagnostic tools for sensitive screening of patients at risk of invasive fungal infections. This chapter summarizes the currently available molecular technologies employed in testing of a wide range of fungal pathogens, and provides a detailed workflow for patient screening by broad-spectrum nucleic acid amplification techniques.

Key words

Invasive fungal infections Emerging fungal pathogens Panfungal PCR Molecular fungal diagnostics Broad-range fungal diagnostics 

Notes

Acknowledgements

This work was performed within the FUNGITECT project supported by a grant from the European Commission (N° 602125) within the 7th Framework Programme (FP7).

References

  1. 1.
    Barnes PD, Marr KA (2007) Risks, diagnosis and outcomes of invasive fungal infections in haematopoietic stem cell transplant recipients. Br J Haematol 139:519–531CrossRefPubMedGoogle Scholar
  2. 2.
    Preuner S, Lion T (2009) Towards molecular diagnostics of invasive fungal infections. Expert Rev Mol Diagn 9:397–401CrossRefPubMedGoogle Scholar
  3. 3.
    Pfaller MA, Diekema DJ (2004) Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol 42:4419–4431CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Tuite NL, Lacey K (2013) Overview of invasive fungal infections. Methods Mol Biol 968:1–23CrossRefPubMedGoogle Scholar
  5. 5.
    Alexander BD, Pfaller MA (2006) Contemporary tools for the diagnosis and management of invasive mycoses. Clin Infect Dis 43:15–17CrossRefGoogle Scholar
  6. 6.
    Caston-Osorio JJ, Rivero A, Torre-Cisneros J (2008) Epidemiology of invasive fungal infection. Int J Antimicrob Agents 32(Suppl 2):S103–S109CrossRefPubMedGoogle Scholar
  7. 7.
    Jordanides NE, Allan EK, McLintock LA et al (2005) A prospective study of real-time panfungal PCR for the early diagnosis of invasive fungal infection in haemato-oncology patients. Bone Marrow Transplant 35:389–395CrossRefPubMedGoogle Scholar
  8. 8.
    Peters RP, van Agtmael MA, Danner SA et al (2004) New developments in the diagnosis of bloodstream infections. Lancet Infect Dis 4:751–760CrossRefPubMedGoogle Scholar
  9. 9.
    Munoz-Cadavid C, Rudd S, Zaki SR et al (2010) Improving molecular detection of fungal DNA in formalin-fixed paraffin-embedded tissues: comparison of five tissue DNA extraction methods using panfungal PCR. J Clin Microbiol 48:2147–2153CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Van Burik JA, Myerson D, Schreckhise RW et al (1998) Panfungal PCR assay for detection of fungal infection in human blood specimens. J Clin Microbiol 36:1169–1175PubMedPubMedCentralGoogle Scholar
  11. 11.
    Lau A, Chen S, Sorrell T et al (2007) Development and clinical application of a panfungal PCR assay to detect and identify fungal DNA in tissue specimens. J Clin Microbiol 45:380–385CrossRefPubMedGoogle Scholar
  12. 12.
    Landlinger C, Preuner S, Baskova L et al (2010) Diagnosis of invasive fungal infections by a real-time panfungal PCR assay in immunocompromised pediatric patients. Leukemia 24:2032–2038CrossRefPubMedGoogle Scholar
  13. 13.
    El-Sayed ZA, Hasan ZE, Nasr RAR (2012) Real-time PCR in the early detection of invasive fungal infection in immunodeficient infants and children. Egypt J Pediatr Allergy Immunol 10:67–74Google Scholar
  14. 14.
    De Marco D, Perotti M, Ossi CM et al (2007) Development and validation of a molecular method for the diagnosis of medically important fungal infections. New Microbiol 30:308–312PubMedGoogle Scholar
  15. 15.
    Vollmer T, Stormer M, Kleesiek K et al (2008) Evaluation of novel broad-range real-time PCR assay for rapid detection of human pathogenic fungi in various clinical specimens. J Clin Microbiol 46:1919–1926CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Zhao Y, Park S, Kreiswirth BN et al (2009) Rapid real-time nucleic acid sequence-based amplification-molecular beacon platform to detect fungal and bacterial bloodstream infections. J Clin Microbiol 47:2067–2078CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    De Pauw B, Walsh TJ, Donnelly JP et al (2008) Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 46:1813–1821CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Stevens DA (2002) Diagnosis of fungal infections: current status. J Antimicrob Chemother 49(Suppl 1):11–19CrossRefPubMedGoogle Scholar
  19. 19.
    Khot PD, Ko DL, Fredricks DN (2009) Sequencing and analysis of fungal rRNA operons for development of broad-range fungal PCR assays. Appl Environ Microbiol 75:1559–1565CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Hasseine L, Cassaing S, Robert-Gangneux F et al (2015) High negative predictive value diagnostic strategies for the reevaluation of early antifungal treatment: a multicenter prospective trial in patients at risk for invasive fungal infections. J Infect 71:258–265CrossRefPubMedGoogle Scholar
  21. 21.
    White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (ed) PCR protocols. A guide to methods and applications. pp 315–322Google Scholar
  22. 22.
    Schabereiter-Gurtner C, Selitsch B, Rotter ML et al (2007) Development of novel real-time PCR assays for detection and differentiation of eleven medically important Aspergillus and Candida species in clinical specimens. J Clin Microbiol 45:906–914CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Babouee B, Goldenberger D, Elzi L et al (2013) Prospective study of a panfungal PCR assay followed by sequencing, for the detection of fungal DNA in normally sterile specimens in a clinical setting: a complementary tool in the diagnosis of invasive fungal disease? Clin Microbiol Infect 19:E354–E357CrossRefPubMedGoogle Scholar
  24. 24.
    Duval SM, Donnelly JP, Barnes R, Loeffler J (2008) PCR-based methods with aspergillosis as a model. J Invasive Fungal Infect 2:46–51Google Scholar
  25. 25.
    Loeffler J, Henke N, Hebart H et al (2000) Quantification of fungal DNA by using fluorescence resonance energy transfer and the light cycler system. J Clin Microbiol 38:586–590PubMedPubMedCentralGoogle Scholar
  26. 26.
    McCormick A, Loeffler J, Ebel F (2010) Aspergillus fumigatus: contours of an opportunistic human pathogen. Cell Microbiol 12:1535–1543CrossRefPubMedGoogle Scholar
  27. 27.
    Filler SG, Sheppard DC (2006) Fungal invasion of normally non-phagocytic host cells. PLoS Pathog 2:e129CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Loeffler J, Kloepfer K, Hebart H et al (2002) Polymerase chain reaction detection of Aspergillus DNA in experimental models of invasive aspergillosis. J Infect Dis 185:1203–1206CrossRefPubMedGoogle Scholar
  29. 29.
    White PL, Bretagne S, Klingspor L et al (2010) Aspergillus PCR: one step closer to standardization. J Clin Microbiol 48:1231–1240CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Pfeiffer CD, Samsa GP, Schell WA et al (2011) Quantitation of Candida CFU in initial positive blood cultures. J Clin Microbiol 49:2879–2883CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Ballantyne KN, van Oorschot RA, Mitchell RJ (2008) Locked nucleic acids in PCR primers increase sensitivity and performance. Genomics 91:301–305CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Children’s Cancer Research Institute (CCRI)St. Anna KinderkrebsforschungViennaAustria
  2. 2.LabDia Labordiagnostik GmbHViennaAustria
  3. 3.Department of PediatricsMedical University of ViennaViennaAustria

Personalised recommendations