Prerequisites for Control of Contamination in Fungal Diagnosis

  • Stefan Czurda
  • Thomas LionEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1508)


Nucleic acid amplification methods facilitate rapid and sensitive detection of clinically relevant fungal pathogens, and can be employed using a variety of patient specimens. However, contamination from various exogenous sources constitutes a serious threat to the validity of amplification-based fungal assays. In this chapter, common origins of fungal contaminants that compromise molecular fungal testing are described, and measures for preventing contamination are proposed. Detailed guidelines for sample handling, reagent selection, contamination screening, and decontamination procedures are provided.

Key words

PCR reagent contamination Contamination prevention DNase-mediated decontamination Invasive fungal infection Molecular fungal diagnostics 



The work presented was conducted within the FUNGITECT project supported by a grant from the European Commission (N° 602125) within the 7th Framework Programme (FP7).


  1. 1.
    Zhao Y, Park S, Kreiswirth BN et al (2009) Rapid real-time nucleic acid sequence-based amplification-molecular beacon platform to detect fungal and bacterial bloodstream infections. J Clin Microbiol 47:2067–2078CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Lau A, Chen S, Sorrell T et al (2007) Development and clinical application of a panfungal PCR assay to detect and identify fungal DNA in tissue specimens. J Clin Microbiol 45:380–385CrossRefPubMedGoogle Scholar
  3. 3.
    Babouee B, Goldenberger D, Elzi L et al (2013) Prospective study of a panfungal PCR assay followed by sequencing, for the detection of fungal DNA in normally sterile specimens in a clinical setting: a complementary tool in the diagnosis of invasive fungal disease? Clin Microbiol Infect 19:E354–E357CrossRefPubMedGoogle Scholar
  4. 4.
    Landlinger C, Preuner S, Baskova L et al (2010) Diagnosis of invasive fungal infections by a real-time panfungal PCR assay in immunocompromised pediatric patients. Leukemia 24:2032–2038CrossRefPubMedGoogle Scholar
  5. 5.
    Champlot S, Berthelot C, Pruvost M et al (2010) An efficient multistrategy DNA decontamination procedure of PCR reagents for hypersensitive PCR applications. PloS One 5 doi:  10.1371/journal.pone.0013042
  6. 6.
    Loeffler J, Hebart H, Bialek R et al (1999) Contaminations occurring in fungal PCR assays. J Clin Microbiol 37:1200–1202PubMedPubMedCentralGoogle Scholar
  7. 7.
    Baskova L, Landlinger C, Preuner S et al (2007) The Pan-AC assay: a single-reaction real-time PCR test for quantitative detection of a broad range of Aspergillus and Candida species. J Med Microbiol 56:1167–1173CrossRefPubMedGoogle Scholar
  8. 8.
    Haleem Khan AA, Mohan Karuppayil S (2012) Fungal pollution of indoor environments and its management. Saudi J Biol Sci 19:405–426CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Grice EA, Segre JA (2011) The skin microbiome. Nat Rev Microbiol 9:244–253CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Czurda S, Smelik S, Preuner-Stix S et al (2016) Occurrence of fungal DNA contamination in PCR reagents: approaches to control and decontamination. J Clin Microbiol 54:148–152CrossRefPubMedGoogle Scholar
  11. 11.
    Fredricks DN, Smith C, Meier A (2005) Comparison of six DNA extraction methods for recovery of fungal DNA as assessed by quantitative PCR. J Clin Microbiol 43:5122–5128CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Miyajima Y, Satoh K, Umeda Y et al (2009) Quantitation of fungal DNA contamination in commercial zymolyase and lyticase used in the preparation of fungi. Nippon Ishinkin Gakkai Zasshi 50:259–262CrossRefGoogle Scholar
  13. 13.
    Rimek D, Garg AP, Haas WH et al (1999) Identification of contaminating fungal DNA sequences in Zymolyase. J Clin Microbiol 37:830–831PubMedPubMedCentralGoogle Scholar
  14. 14.
    Khot PD, Fredricks DN (2009) PCR-based diagnosis of human fungal infections. Expert Rev Anti Infect Ther 7:1201–1221CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Harrison E, Stalhberger T, Whelan R et al (2010) Aspergillus DNA contamination in blood collection tubes. Diagn Microbiol Infect Dis 67:392–394CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nilsen IW, Overbo K, Jensen Havdalen L et al (2010) The enzyme and the cDNA sequence of a thermolabile and double-strand specific DNase from Northern shrimps (Pandalus borealis). PLoS One 5:e10295CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Landlinger C, Preuner S, Willinger B et al (2009) Species-specific identification of a wide range of clinically relevant fungal pathogens by use of Luminex xMAP technology. J Clin Microbiol 47:1063–1073CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Children’s Cancer Research Institute (CCRI)St. Anna KinderkrebsforschungViennaAustria
  2. 2.LabDia Labordiagnostik GmbHViennaAustria
  3. 3.Department of PediatricsMedical University of ViennaViennaAustria

Personalised recommendations