Skip to main content

Sialic Acid Derivatization for the Rapid Subclass- and Sialic Acid Linkage-Specific MALDI-TOF-MS Analysis of IgG Fc-Glycopeptides

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1503))

Abstract

Matrix-assisted laser desorption/ionization (MALDI)-time-of-flight (TOF)-mass spectrometry (MS) is a highly suitable method for the rapid analysis of IgG glycopeptides, providing a wealth of structural information. A limitation of this approach is that it generates a bias when analyzing sialylated species due to the labile nature of sialic acid glycosidic linkages. One way to overcome this problem is by chemical derivatization of the sialic acids. The method presented here results in both the stabilization of the sialic acids, as well as the differentiation of α2,3- and α2,6-linked sialic acids by mass. Described in this chapter are the isolation of IgG from plasma or serum, tryptic digestion of the samples, derivatization, and finally MALDI-TOF-MS measurement and data analysis.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Crocker PR, Paulson JC, Varki A (2007) Siglecs and their roles in the immune system. Nat Rev Immunol 7:255–266

    Article  CAS  PubMed  Google Scholar 

  2. Muramatsu T (2000) Essential roles of carbohydrate signals in development, immune response and tissue functions, as revealed by gene targeting. J Biochem 127:171–176

    Article  CAS  PubMed  Google Scholar 

  3. Vidarsson G, Dekkers G, Rispens T (2014) IgG subclasses and allotypes: from structure to effector functions. Front Immunol 5:520

    Article  PubMed  PubMed Central  Google Scholar 

  4. Houde D, Peng Y, Berkowitz SA, et al. (2010) Post-translational modifications differentially affect IgG1 conformation and receptor binding. Mol Cell Proteomics 9:1716–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Okazaki A, Shoji-Hosaka E, Nakamura K, et al. (2004) Fucose depletion from human IgG1 oligosaccharide enhances binding enthalpy and association rate between IgG1 and FcgammaRIIIa. J Mol Biol 336:1239–1249

    Article  CAS  PubMed  Google Scholar 

  6. Bondt A, Selman MH, Deelder AM, et al. (2013) Association between galactosylation of immunoglobulin G and improvement of rheumatoid arthritis during pregnancy is independent of sialylation. J Proteome Res 12:4522–4531

    Article  CAS  PubMed  Google Scholar 

  7. Dall’Olio F, Vanhooren V, Chen CC, et al. (2013) N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev 12:685–698

    Article  PubMed  Google Scholar 

  8. Trbojevic AI, Ventham NT, Theodoratou E, et al. (2015) Inflammatory bowel disease associates with proinflammatory potential of the immunoglobulin G glycome. Inflamm Bowel Dis 21:1237–1247

    Google Scholar 

  9. Chung CH, Mirakhur B, Chan E, et al. (2008) Cetuximab-induced anaphylaxis and IgE specific for galactose-alpha-1,3-galactose. N Engl J Med 358:1109–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Goetze AM, Liu YD, Zhang Z, et al. (2011) High-mannose glycans on the Fc region of therapeutic IgG antibodies increase serum clearance in humans. Glycobiology 21:949–959

    Article  CAS  PubMed  Google Scholar 

  11. Anthony RM, Nimmerjahn F, Ashline DJ, et al. (2008) Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science 320:373–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Harvey DJ (2006) Analysis of carbohydrates and glycoconjugates by matrix-assisted laser desorption/ionization mass spectrometry: an update covering the period 1999-2000. Mass Spectrom Rev 25:595–662

    Article  CAS  PubMed  Google Scholar 

  13. Huffman JE, Pucic-Bakovic M, Klaric L, et al. (2014) Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research. Mol Cell Proteomics 13:1598–1610

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Reiding KR, Blank D, Kuijper DM, et al. (2014) High-throughput profiling of protein N-glycosylation by MALDI-TOF-MS employing linkage-specific sialic acid esterification. Anal Chem 86:5784–5793

    Article  CAS  PubMed  Google Scholar 

  15. Alley WR Jr, Novotny MV (2010) Glycomic analysis of sialic acid linkages in glycans derived from blood serum glycoproteins. J Proteome Res 9:3062–3072

    Google Scholar 

  16. Wheeler SF, Domann P, Harvey DJ (2009) Derivatization of sialic acids for stabilization in matrix-assisted laser desorption/ionization mass spectrometry and concomitant differentiation of alpha(2 -->3)- and alpha(2 --> 6)-isomers. Rapid Commun Mass Spectrom 23:303–312

    Article  CAS  PubMed  Google Scholar 

  17. de Haan N, Reiding KR, Haberger M, et al. (2015) Linkage-specific sialic acid derivatization for MALDI-TOF-MS profiling of IgG glycopeptides. Anal Chem 87:8284–8291

    Article  PubMed  Google Scholar 

  18. Gomes de Oliveira AG, Roy R, Raymond C, et al. (2015) A systematic study of glyco-peptide esterification for the semi-quantitative determination of sialylation in antibodies. Rapid Commun Mass Spectrom 29:817–1826

    Google Scholar 

  19. Einarsdottir HK, Selman MH, Kapur R, et al. (2013) Comparison of the Fc glycosylation of fetal and maternal immunoglobulin G. Glycoconj J 30:147–157

    Article  CAS  PubMed  Google Scholar 

  20. Selman MH, Hemayatkar M, Deelder AM, et al. (2011) Cotton HILIC SPE microtips for microscale purification and enrichment of glycans and glycopeptides. Anal Chem 83:2492–2499

    Article  CAS  PubMed  Google Scholar 

  21. Shakib F, Stanworth DR (1980) Human IgG subclasses in health and disease. (A review). Part II. Ric Clin Lab 10:561–580

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union Seventh Framework Programmes IBD-BIOM (grant number 305479) and HighGlycan (grant number 278535), as well as by the Netherlands Genomic Initiative Horizon Programme Zenith project (grant number 93511033). Additional financial support was provided by Hoffmann-la Roche.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manfred Wuhrer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

de Haan, N., Reiding, K.R., Wuhrer, M. (2017). Sialic Acid Derivatization for the Rapid Subclass- and Sialic Acid Linkage-Specific MALDI-TOF-MS Analysis of IgG Fc-Glycopeptides. In: Lauc, G., Wuhrer, M. (eds) High-Throughput Glycomics and Glycoproteomics. Methods in Molecular Biology, vol 1503. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6493-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6493-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6491-8

  • Online ISBN: 978-1-4939-6493-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics