Skip to main content

Involvement of Nitric Oxide in Neurotoxicity Produced by Psychostimulant Drugs

  • Protocol
  • First Online:
In Vivo Neuropharmacology and Neurophysiology

Part of the book series: Neuromethods ((NM,volume 121))

  • 1050 Accesses

Abstract

The discovery of nitric oxide (NO) as a multifunctional physiological regulator was one of the fundamental event of the end twentieth century. NO is a gaseous chemical messenger that is involved in many physiological processes including regulation of blood pressure, immune response and neural communication. The short half-life of NO in tissues makes its direct determination difficult. The possible involvement of NO in various pathological states is supported mainly by indirect evidence. We have used the original technique—electron paramagnetic resonance (EPR) for determination of NO in brain tissues. In this review we describe some selected experimental models that have been used to investigate an involvement of NO in the mechanisms of neurotoxicity induced by psychostimulant drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Moncada S, Higgs EA (1991) Endogenous nitric oxide: physiology, pathology and clinical relevance. Eur J Clin Invest 21:361–374

    Article  CAS  PubMed  Google Scholar 

  2. Dawson TM, Snyder SH (1994) Gases as biological messengers: nitric oxide and carbon monoxide in the brain. J Neurosci 14:5147–5159

    CAS  PubMed  Google Scholar 

  3. Mulsch A, Busse R, Mordvintcev PI, Vanin AF, Nielsen EO, Scheel-Krüger J, Olesen SP (1994) Nitric oxide promotes seizure activity in kainate-treated rats. Neuroreport 5:2325–2328

    Article  CAS  PubMed  Google Scholar 

  4. Yew DT, Wong HW, Li WP, Lai HW, Yu WH (1999) Nitric oxide synthase neurons in different areas of normal aged and Alzheimer’s brains. Neuroscience 89:675–686

    Article  CAS  PubMed  Google Scholar 

  5. Collins SL, Edwards MA, Kantak KM (2001) Effects of nitric oxide synthase inhibitors on the discriminative stimulus effects of cocaine in rats. Psychopharmacology (Berl) 154:261–273

    Article  CAS  Google Scholar 

  6. Prast H, Philippu A (2001) Nitric oxide as a modulator of neuronal function. Prog Neurobiol 64:51–68

    Article  CAS  PubMed  Google Scholar 

  7. Narkevich VB, Mikoyan VD, Bashkatova VG (2005) Modulating role of NO in haloperidol-induced catalepsy. Bull Exp Biol Med 139:328–330

    Article  CAS  PubMed  Google Scholar 

  8. Cooper JR, Bloom FE, Roth RH (1996) The biochemical basis of neuropharmacology. Oxford University Press, Oxford, NY, pp 126–458

    Google Scholar 

  9. Bredt DS, Snyder SH (1994) Nitric oxide: a physiologic messenger molecule. Annu Rev Biochem 63:175–195

    Article  CAS  PubMed  Google Scholar 

  10. Dawson TM, Dawson VL, Snyder SH (1994) Molecular mechanisms of nitric oxide actions in the brain. Ann N Y Acad Sci 738:76–85

    Article  CAS  PubMed  Google Scholar 

  11. Bredt DS, Hwang PM, Snyder SH (1990) Localization of nitric oxide synthase indicating a neural role for nitric oxide. Nature 347:768–770

    Article  CAS  PubMed  Google Scholar 

  12. Sancesario G, Iannone M, Morello M, Nisticò G, Bernardi G (1994) Nitric oxide inhibition aggravates ischemic damage of hippocampal but not of NADPH neurons in gerbils. Stroke 25:436–443

    Article  CAS  PubMed  Google Scholar 

  13. Di Monte DA, Royland JE, Jakowec MW, Langston JW (1996) Role of nitric oxide in methamphetamine neurotoxicity: protection by 7-nitroindazole, an inhibitor of neuronal nitric oxide synthase. J Neurochem 67:2443–2450

    Article  PubMed  Google Scholar 

  14. Imam SZ, Islam F, Itzhak Y (2000) Prevention of dopaminergic neurotoxicity by targeting nitric oxide and peroxynitrite: implications for the prevention of methamphetamine-induced neurotoxic damage. Ann N Y Acad Sci 914:157–171

    Article  CAS  PubMed  Google Scholar 

  15. Bryan NS, Grisham MB (2007) Methods to detect nitric oxide and its metabolites in biological samples. Free Radic Biol Med 43:645–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Hogg N (2010) Detection of nitric oxide by electron paramagnetic resonance spectroscopy. Free Radic Biol Med 49:122–129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Kikuchi K, Hayakawa H, Nagano T, Hirata Y, Sugimoto T, Hirobe M (1992) New method of detecting nitric oxide production. Chem Pharm Bull (Tokyo) 40:2233–2235

    Article  CAS  Google Scholar 

  18. Ewing JF, Janero DR (1998) Specific S-nitrosothiol (thionitrite) quantification as solution nitrite after vanadium(III) reduction and ozone-chemiluminescent detection. Free Radic Biol Med 25:621–628

    Article  CAS  PubMed  Google Scholar 

  19. Villeneuve N, Bedioui F, Voituriez K, Avaro S, Vilaine JP (1998) Electrochemical detection of nitric oxide production in perfused pig coronary artery: comparison of the performances of two electrochemical sensors. J Pharmacol Toxicol Methods 40:95–100

    Article  CAS  PubMed  Google Scholar 

  20. Martín M, O’Neill RD, González-Mora JL, Salazar P (2014) The use of fluorocarbons to mitigate the oxygen dependence of glucose microbiosensors for neuroscience applications. J Electrochem Soc 161:H689–H695. doi:10.1149/2.1071410jes

    Article  Google Scholar 

  21. Tsikas D (2005) Methods of quantitative analysis of the nitric oxide metabolites nitrite and nitrate in human biological fluids. Free Radic Res 39:797–815

    Article  CAS  PubMed  Google Scholar 

  22. Kleinbongard P, Dejam A, Lauer T, Rassaf T, Schindler A, Picker O, Scheeren T, Gödecke A, Schrader J, Schulz R, Heusch G, Schaub GA, Bryan NS, Feelisch M, Kelm M (2003) Plasma nitrite reflects constitutive nitric oxide synthase activity in mammals. Free Radic Biol Med 35:790–796

    Article  CAS  PubMed  Google Scholar 

  23. Shiva S, Wang X, Ringwood LA, Xu Xб Yuditskaya S, Annavajjhala V, Miyajima H, Hogg N, Harris ZL, Gladwin MT (2006) Ceruloplasmin is a NO oxidase and nitrite synthase that determines endocrine NO homeostasis. Nat Chem Biol 2:486–493

    Article  CAS  PubMed  Google Scholar 

  24. Bryan NS, Fernandez BO, Bauer SM, Garcia-Saura MF, Milsom AB, Rassaf T, Maloney RE, Bharti A, Rodriguez J, Feelisch M (2005) Nitrite is a signaling molecule and regulator of gene expression in mammalian tissues. Nat Chem Biol 1:290–297

    Article  CAS  PubMed  Google Scholar 

  25. Tsikas D (2007) Analysis of nitrite and nitrate in biological fluids by assays based on the Griess reaction: appraisal of the Griess reaction in the L-arginine/nitric oxide area of research. J Chromatogr B Analyt Technol Biomed Life Sci 851:51–70

    Article  CAS  PubMed  Google Scholar 

  26. Miles AM, Wink DA, Cook JC, Grisham MB (1996) Determination of nitric oxide using fluorescence spectroscopy. Methods Enzymol 268:105–120

    Article  CAS  PubMed  Google Scholar 

  27. Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T (1998) Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 70:2446–2453

    Article  CAS  PubMed  Google Scholar 

  28. Schoneich C, Sharov VS (2006) Mass spectrometry of protein modifications by reactive oxygen and nitrogen species. Free Radic Biol Med 41:1507–1520

    Article  PubMed  Google Scholar 

  29. Timoshin AA, Lakomkin VL, Ruuge ÉK, Vanin AF (2012) Study of dinitrosyl-iron complexes pharmacokinetics and accumulation in depot in rat organs. Biofizika 57:331–337

    CAS  PubMed  Google Scholar 

  30. Kubrina LN, Caldwell WS, Mordvintcev PI, Malenkova IV, Vanin AF (1992) EPR evidence for nitric oxide production from guanidino nitrogens of L-arginine in animal tissues in vivo. Biochim Biophys Acta 1099:233–237

    Article  CAS  PubMed  Google Scholar 

  31. Vanin AF, Mordvintcev PI, Hauschildt S, Mülsch A (1993) The relationship between L-arginine-dependent nitric oxide synthesis, nitrite release and dinitrosyl-iron complex formation by activated macrophages. Biochim Biophys Acta 1177:37–42

    Article  CAS  PubMed  Google Scholar 

  32. Vanin AF, Varich VI (1979) Formation of nitrosyl complexes of nonheme iron (2.03 complexes) in animal tissues in vivo. Biofizika 24:666–670

    CAS  PubMed  Google Scholar 

  33. Vanin AF, Men’shikov GB, Moroz IA, Mordvintcev PI, Serezhenkov VA, Burbaev DS (1992) The source of non-heme iron that binds nitric oxide in cultivated macrophages. Biochim Biophys Acta 1135:275–279

    Article  CAS  PubMed  Google Scholar 

  34. Vanin AF, Huisman A, van Faassen EE (2002) Iron dithiocarbamate as spin trap for nitric oxide detection: pitfalls and successes. Methods Enzymol 359:27–42

    Article  CAS  PubMed  Google Scholar 

  35. Mikoian VD, Kubrina LN, Vanin AF (1994) Detection of the generation of nitric oxide from L-arginine in the murine brain in vivo using EPR. Biofizika 39:915–918

    CAS  PubMed  Google Scholar 

  36. Bashkatova VG, Mikoian VD, Kosacheva ES, Kubrina LN, Vanin AF, Raevskiĭ KS (1996) Direct determination of nitric oxide in rat brain during various types of seizures using ESR. Dokl Akad Nauk 348:119–121

    CAS  PubMed  Google Scholar 

  37. Jones SR, Joseph JD, Barak LS, Caron MG, Wightman RM (1999) Dopamine neuronal transport kinetics and effects of amphetamine. J Neurochem 73:2406–2414

    Article  CAS  PubMed  Google Scholar 

  38. Sulzer D, Rayport S (1990) Amphetamine and other psychostimulants reduce pH gradients in midbrain dopaminergic neurons and chromaffin granules: a mechanism of action. Neuron 5:797–808

    Article  CAS  PubMed  Google Scholar 

  39. Weihmuller FB, O’Dell SJ, Marshall JF (1993) L-dopa pretreatment potentiates striatal dopamine overflow and produces dopamine terminal injury after a single methamphetamine injection. Brain Res 623:303–307

    Article  CAS  PubMed  Google Scholar 

  40. Gibb JW, Johnson M, Hanson GR (1990) Neurochemical basis of neurotoxicity. Neurotoxicology 11:317–321

    CAS  PubMed  Google Scholar 

  41. Abekawa T, Ohmori T, Koyama T (1996) Effects of nitric oxide synthesis inhibition on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in the rat brain. J Neural Transm 103:671–680

    Article  CAS  PubMed  Google Scholar 

  42. Kita T, Takahashi M, Kubo K (1999) Hydroxyl radical formation following methamphetamine administration to rats. Pharmacol Toxicol 85:133–137

    Article  CAS  PubMed  Google Scholar 

  43. Acikgoz O, Gonenc S, Kayatekin BM, Pekçetin C, Uysal N, Dayi A, Semin I, Güre A (2000) The effects of single dose of methamphetamine on lipid peroxidation levels in the rat striatum and prefrontal cortex. Eur Neuropsychopharmacol 10:415–418

    Article  CAS  PubMed  Google Scholar 

  44. Wan FJ, Lin HC, Huang KL, Tseng CJ, Wong CS (2000) Systemic administration of d-amphetamine induces long-lasting oxidative stress in the rat striatum. Life Sci 66:205–212

    Article  Google Scholar 

  45. Raevskii KS, Bashkatova VG, Narkevich VB, Vitskova GI, Mikoian VD, Vanin AF (1998) Nitric oxide in the rat cerebral cortex in seizure models: potential ways of pharmacological modulation. Ross Fiziol Zh Im I M Sechenova 84:1093–1099

    CAS  PubMed  Google Scholar 

  46. Bashkatova VG, Vitskova GI, Narkevich VB, Mikoian VD, Vanin AF, Raevskii KS (1999) The effect of anticonvulsants on the nitric oxide content and level of lipid peroxidation in the brain of rats in model seizure states. Eksp Klin Farmakol 62:11–14

    CAS  PubMed  Google Scholar 

  47. Fadiukova OE, Alekseev AA, Bashkatova VG, Tolordava IA, Kuzenkov VS, Mikoian VD, Vanin AF, Koshelev VB, Raevskiĭ KS (2001) Semax prevents elevation of nitric oxide generation caused by incomplete global ischemia in the rat brain. Eksp Klin Farmakol 64:31–34

    CAS  PubMed  Google Scholar 

  48. Taraska T, Finnegan KT (1997) Nitric oxide and the neurotoxic effects of methamphetamine and 3,4-methylenedioxymethamphetamine. J Pharmacol Exp Ther 280:941–947

    CAS  PubMed  Google Scholar 

  49. Ali SF, Itzhak Y (1998) Effects of 7-nitroindazole, an NOS inhibitor on methamphetamine-induced dopaminergic and serotonergic neurotoxicity in mice. Ann N Y Acad Sci 844:122–130

    Article  CAS  PubMed  Google Scholar 

  50. Imam SZ, el-Yazal J, Newport GD, Itzhak Y, Cadet JL, Slikker W Jr, Ali SF (2001) Methamphetamine-induced dopaminergic neurotoxicity: role of peroxynitrite and neuroprotective role of antioxidants and peroxynitrite decomposition catalysts. Ann N Y Acad Sci 939:366–380

    Article  CAS  PubMed  Google Scholar 

  51. Nowak P, Brus R, Oswiecimska J, Sokoła A, Kostrzewa RM (2002) 7-Nitroindazole enhances amphetamine-evoked dopamine release in rat striatum. an in vivo microdialysis and voltammetric study. J Physiol Pharmacol 53:251–263

    CAS  PubMed  Google Scholar 

  52. West A, Galloway M, Grace A (2002) Regulation of striatal dopamine neurotransmission by nitric oxide: effector pathways and signaling mechanisms. Synapse 44:227–245

    Article  CAS  PubMed  Google Scholar 

  53. Rudenko GM, Altshuler RA (1979) Peculiarities of clinical activity and pharmacokinetics of sydnocarb(sydnocarbum) and original pshychostimulant. Agressologie 20:265–270

    CAS  PubMed  Google Scholar 

  54. Gainetdinov RR, Sotnikova TD, Grehkova TV, Rayevsky KS (1997) Effects of a psychostimulant drug sydnocarb on rat brain dopaminergic transmission in vivo. Eur J Pharmacol 340:53–58

    Article  CAS  PubMed  Google Scholar 

  55. Witkin JM, Savtchenko N, Mashkovsky M, Beekman M, Munzar P, Gasior M, Goldberg SR, Ungard JT, Kim J, Shippenberg T, Chefer V (1999) Behavioral, toxic, and neurochemical effects of sydnocarb, a novel psychomotor stimulant: comparisons with methamphetamine. J Pharmacol Exp Ther 288:1298–1310

    CAS  PubMed  Google Scholar 

  56. O’Dell SJ, Weihmuller FB, Marshall JF (1991) Multiple methamphetamine injections induce marked increases in extracellular striatal dopamine which correlate with subsequent neurotoxicity. Brain Res 564:256–260

    Article  PubMed  Google Scholar 

  57. Metzger RR, Haughey HM, Wilkins DG, Gibb JW, Hanson GR, Fleckenstein AE (2000) Methamphetamine-induced rapid decrease in dopamine transporter function: role of dopamine and hyperthermia. J Pharmacol Exp Ther 295:1077–1085

    CAS  PubMed  Google Scholar 

  58. Riddle EL, Fleckenstein AE, Hanson GR (2006) Mechanisms of methamphetamine-induced dopaminergic neurotoxicity. AAPS J 8:E413–E418

    Article  PubMed  PubMed Central  Google Scholar 

  59. Prast H, Fischer H, Werner E, Werner-Felmayer G, Philippu A (1995) Nitric oxide modulates the release of acetylcholine in the ventral striatum of the freely moving rat. Naunyn Schmiedebergrs Arch Pharmacol 352:67–73

    CAS  Google Scholar 

  60. Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  61. Tominaga T, Sato S, Ohnishi T, Ohnishi ST (1993) Potentiation of nitric oxide formation following bilateral carotid occlusion and focal cerebral ischemia in the rat: in vivo detection of the nitric oxide radical by electron paramagnetic resonance spin trapping. Brain Res 614:342–346

    Article  CAS  PubMed  Google Scholar 

  62. Bashkatova V, Kraus M, Prast H, Vanin A, Rayevsky K, Philippu A (1999) Influence of NOS inhibitors on changes in ACH release and NO level in the brain elicited by amphetamine neurotoxicity. Neuroreport 10:3155–3158

    Article  CAS  PubMed  Google Scholar 

  63. Bashkatova V, Vitskova G, Narkevich V, Vanin A, Mikoyan V, Rayevsky K (2000) Nitric oxide content measured by ESR-spectroscopy in the rat brain is increased during pentylenetetrazole-induced seizures. J Mol Neurosci 14:183–190

    Article  CAS  PubMed  Google Scholar 

  64. Klyueva YA, Bashkatova VG, Vitskova GY, Narkevich VB, Mikoyan VD, Vanin AF, Chepurnov SA, Chepurnova NE (2001) Role of nitric oxide and lipid peroxidation in mechanisms of febrile convulsions in Wistar rat pups. Bull Exp Biol Med 131:47–49

    Article  CAS  PubMed  Google Scholar 

  65. Bowyer JF, Clausing P, Gough B, Slikker W Jr, Holson RR (1995) Nitric oxide regulation of methamphetamine-induced dopamine release in caudate/putamen. Brain Res 699:62–70

    Article  CAS  PubMed  Google Scholar 

  66. Huang NK, Wan FJ, Tseng CJ, Tung CS (1997) Amphetamine induces hydroxyl radical formation in the striatum of rats. Life Sci 61:2219–2229

    Article  CAS  PubMed  Google Scholar 

  67. Lin HC, Kang BH, Wong CS, Mao SP, Wan FJ (1999) Systemic administration of D-amphetamine induced a delayed production of nitric oxide in the striatum of rats. Neurosci Lett 276:141–144

    Article  CAS  PubMed  Google Scholar 

  68. Andrerzhanova EA, Afanas’ev II II, Kudrin VS, Rayevsky KS (2000) Effect of D-amphetamine and psychostimulant drug sydnocarb on dopamine, 3,4 dihydroxyphenylacetic acid extracellular concentration and generation of hydroxyl radicals in rat striatum. Ann N Y Acad Sci 914:137–146

    Article  Google Scholar 

  69. Bashkatova V, Mathieu-Kia AM, Durand C et al (2002) Neurochemical changes and neurotoxic effects of an acute treatment with sydnocarb, a novel psychostimulant: comparison with D-amphetamine. Ann N Y Acad Sci 965:180–192

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by INTAS grant (project code 94-500), the “Fonds zur Förderung der Wissenschaftlichen Forschung” of Austria and partially by Russian Foundation for Basic Research grant 16-04-00722.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Bashkatova .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Bashkatova, V. (2017). Involvement of Nitric Oxide in Neurotoxicity Produced by Psychostimulant Drugs. In: Philippu, A. (eds) In Vivo Neuropharmacology and Neurophysiology. Neuromethods, vol 121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6490-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6490-1_18

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6488-8

  • Online ISBN: 978-1-4939-6490-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics