Skip to main content

Immunohistochemical Analysis of Fos Protein Expression for Exploring Brain Regions Related to Central Nervous System Disorders and Drug Actions

  • Protocol
  • First Online:
Book cover In Vivo Neuropharmacology and Neurophysiology

Part of the book series: Neuromethods ((NM,volume 121))

Abstract

Fos protein, an immediate early gene product, is widely used as a biological marker of neural excitation in the neuropharmacology research. Specifically, mapping analysis of Fos expression is a useful method to identify brain regions related to disease conditions (e.g., epilepsy, emotional disorders and cognitive impairments) and responses to various pathophysiological stimuli (e.g., pain, body temperature, stress, and drug treatments). Immunohistochemical staining of Fos protein can be performed by the conventional avidin-biotinylated-horseradish peroxidase complex (ABC)-diaminobenzidine (DAB) method and the counting of Fos-immunoreactivity positive neurons in the regions of interest allows topographical and quantitative analysis of neuronal network activation. In this chapter, we introduce general methods to analyze Fos protein expression, providing essential information for its application to in vivo neuropharmacology research on central nervous system (CNS) disorders and drug actions. Accurate and reliable analysis of Fos expression can help our understanding of the mechanisms underlying the pathogenesis and treatment of CNS disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Morgan JI, Cohen DR, Hempstead JL, Curran T (1987) Mapping patterns of c-fos expression in the central nervous system after seizure. Science 237:192–197

    Article  CAS  PubMed  Google Scholar 

  2. Hoffman GE, Lyo D (2002) Anatomical markers of activity in neuroendocrine systems: are we all ‘fos-ed out’? J Neuroendocrinol 14:259–268

    Article  CAS  PubMed  Google Scholar 

  3. Kovacs KJ (1998) c-Fos as a transcription factor: a stressful (re)view from a functional map. Neurochem Int 33:287–297

    Article  CAS  PubMed  Google Scholar 

  4. Okuno H (2011) Regulation and function of immediate-early genes in the brain: beyond neuronal activity markers. Neurosci Res 69:175–186

    Article  CAS  PubMed  Google Scholar 

  5. Sassone-Corsi P, Visvader J, Ferland L, Mellon PL, Verma IM (1988) Induction of proto-oncogene fos transcription through the adenylate cyclase pathway: characterization of a cAMP-responsive element. Genes Dev 2:1529–1538

    Article  CAS  PubMed  Google Scholar 

  6. Berkowitz LA, Riabowol KT, Gilman MZ (1989) Multiple sequence elements of a single functional class are required for cyclic AMP responsiveness of the mouse c-fos promoter. Mol Cell Biol 9:4272–4281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Sheng M, McFadden G, Greenberg ME (1990) Membrane depolarization and calcium induce c-fos transcription via phosphorylation of transcription factor CREB. Neuron 4:571–582

    Article  CAS  PubMed  Google Scholar 

  8. Gilman MZ (1988) The c-fos serum response element responds to protein kinase C-dependent and -independent signals but not to cyclic AMP. Genes Dev 2:394–402

    Article  CAS  PubMed  Google Scholar 

  9. Schonthal A, Buscher M, Angel P, Rahmsdorf HJ, Ponta H, Hattori K, Chiu R, Karin M, Herrlich P (1989) The Fos and Jun/AP-1 proteins are involved in the downregulation of Fos transcription. Oncogene 4:629–636

    CAS  PubMed  Google Scholar 

  10. Kerppola TK, Curran T (1994) Maf and Nrl can bind to AP-1 sites and form heterodimers with Fos and Jun. Oncogene 9:675–684

    CAS  PubMed  Google Scholar 

  11. Fujiwara KT, Kataoka K, Nishizawa M (1993) Two new members of the maf oncogene family, mafK and mafF, encode nuclear b-Zip proteins lacking putative trans-activator domain. Oncogene 8:2371–2380

    CAS  PubMed  Google Scholar 

  12. Kataoka K, Fujiwara KT, Noda M, Nishizawa M (1994) MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Mol Cell Biol 14:7581–7591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kataoka K, Igarashi K, Itoh K, Fujiwara KT, Noda M, Yamamoto M, Nishizawa M (1995) Small Maf proteins heterodimerize with Fos and may act as competitive repressors of the NF-E2 transcription factor. Mol Cell Biol 15:2180–2190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hai T, Curran T (1991) Cross-family dimerization of transcription factors Fos/Jun and ATF/CREB alters DNA binding specificity. Proc Natl Acad Sci U S A 88:3720–3724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Karin M, Liu Z-g, Zandi E (1997) AP-1 function and regulation. Curr Opin Cell Biol 9:240–246

    Article  CAS  PubMed  Google Scholar 

  16. Herdegen T, Waetzig V (2001) AP-1 proteins in the adult brain: facts and fiction about effectors of neuroprotection and neurodegeneration. Oncogene 20:2424–2437

    Article  CAS  PubMed  Google Scholar 

  17. Le Gal La Salle G (1988) Long-lasting and sequential increase of c-fos oncoprotein expression in kainic acid-induced status epilepticus. Neurosci Lett 88:127–130

    Article  Google Scholar 

  18. Dragunow M, Robertson GS, Faull RL, Robertson HA, Jansen K (1990) D2 dopamine receptor antagonists induce fos and related proteins in rat striatal neurons. Neuroscience 37:287–294

    Article  CAS  PubMed  Google Scholar 

  19. Luo Y, Kaur C, Ling EA (2000) Hypobaric hypoxia induces fos and neuronal nitric oxide synthase expression in the paraventricular and supraoptic nucleus in rats. Neurosci Lett 296:145–148

    Article  CAS  PubMed  Google Scholar 

  20. Ohno Y, Okano M, Imaki J, Tatara A, Okumura T, Shimizu S (2010) Atypical antipsychotic properties of blonanserin, a novel dopamine D2 and 5-HT2A antagonist. Pharmacol Biochem Behav 96:175–180

    Article  CAS  PubMed  Google Scholar 

  21. Kovacs KJ (2008) Measurement of immediate-early gene activation- c-fos and beyond. J Neuroendocrinol 20:665–672

    Article  CAS  PubMed  Google Scholar 

  22. Hsia CCW, Hyde DM, Ochs M, Weibel ER (2010) An official research policy statement of the American Thoracic Society/European Respiratory Society: standards for quantitative assessment of lung structure. Am J Respir Crit Care Med 181:394–418

    Article  PubMed  Google Scholar 

  23. Ohno Y, Shimizu S, Harada Y, Morishita M, Ishihara S, Kumafuji K, Sasa M, Serikawa T (2009) Regional expression of Fos-like immunoreactivity following seizures in Noda epileptic rat (NER). Epilepsy Res 87:70–76

    Article  CAS  PubMed  Google Scholar 

  24. Ohno Y, Shimizu S, Imaki J (2009) Effects of tandospirone, a 5-HT1A agonistic anxiolytic agent, on haloperidol-induced catalepsy and forebrain Fos expression in mice. J Pharmacol Sci 109:593–599

    Article  CAS  PubMed  Google Scholar 

  25. Fumoto N, Mashimo T, Masui A, Ishida S, Mizuguchi Y, Minamimoto S, Ikeda A, Takahashi R, Serikawa T, Ohno Y (2014) Evaluation of seizure foci and genes in the Lgi1(L385R/+) mutant rat. Neurosci Res 80:69–75

    Article  CAS  PubMed  Google Scholar 

  26. Ohno Y, Ishihara S, Mashimo T, Sofue N, Shimizu S, Imaoku T, Tsurumi T, Sasa M, Serikawa T (2011) Scn1a missense mutation causes limbic hyperexcitability and vulnerability to experimental febrile seizures. Neurobiol Dis 41:261–269

    Article  CAS  PubMed  Google Scholar 

  27. Dragunow M, Robertson HA (1988) Brain injury induces c-fos protein(s) in nerve and glial-like cells in adult mammalian brain. Brain Res 455:295–299

    Article  CAS  PubMed  Google Scholar 

  28. Bastlund JF, Berry D, Watson WP (2005) Pharmacological and histological characterisation of nicotine-kindled seizures in mice. Neuropharmacology 48:975–983

    Article  CAS  PubMed  Google Scholar 

  29. Fabene PF, Andrioli A, Priel MR, Cavalheiro EA, Bentivoglio M (2004) Fos induction and persistence, neurodegeneration, and interneuron activation in the hippocampus of epilepsy-resistant versus epilepsy-prone rats after pilocarpine-induced seizures. Hippocampus 14:895–907

    Article  PubMed  Google Scholar 

  30. Pernot F, Carpentier P, Baille V, Testylier G, Beaup C, Foquin A, Filliat P, Liscia P, Coutan M, Pierard C, Beracochea D, Dorandeu F (2009) Intrahippocampal cholinesterase inhibition induces epileptogenesis in mice without evidence of neurodegenerative events. Neuroscience 162:1351–1365

    Article  CAS  PubMed  Google Scholar 

  31. Morimoto K, Fahnestock M, Racine RJ (2004) Kindling and status epilepticus models of epilepsy: rewiring the brain. Prog Neurobiol 73:1–60

    Article  CAS  PubMed  Google Scholar 

  32. Li HY, Sawchenko PE (1998) Hypothalamic effector neurons and extended circuitries activated in “neurogenic” stress: a comparison of footshock effects exerted acutely, chronically, and in animals with controlled glucocorticoid levels. J Comp Neurol 393:244–266

    Article  CAS  PubMed  Google Scholar 

  33. Miklos IH, Kovacs KJ (2003) Functional heterogeneity of the responses of histaminergic neuron subpopulations to various stress challenges. Eur J Neurosci 18:3069–3079

    Article  CAS  PubMed  Google Scholar 

  34. Beck CH, Fibiger HC (1995) Chronic desipramine alters stress-induced behaviors and regional expression of the immediate early gene, c-fos. Pharmacol Biochem Behav 51:331–338

    Article  CAS  PubMed  Google Scholar 

  35. Miczek KA, Nikulina EM, Takahashi A, Covington HE 3rd, Yap JJ, Boyson CO, Shimamoto A, de Almeida RM (2011) Gene expression in aminergic and peptidergic cells during aggression and defeat: relevance to violence, depression and drug abuse. Behav Genet 41:787–802

    Article  PubMed  Google Scholar 

  36. Rappeneau V, Morel AL, El Yacoubi M, Vaugeois JM, Denoroy L, Berod A (2015) Enhanced cocaine-associated contextual learning in female H/Rouen mice selectively bred for depressive-like behaviors: molecular and neuronal correlates. Int J Neuropsychopharmacol 18:1–12

    Article  Google Scholar 

  37. Cagniard B, Sotnikova TD, Gainetdinov RR, Zhuang X (2014) The dopamine transporter expression level differentially affects responses to cocaine and amphetamine. J Neurogenet 28:112–121

    Article  CAS  PubMed  Google Scholar 

  38. Sharp FR, Liu J, Nickolenko J, Bontempi B (1995) NMDA and D1 receptors mediate induction of c-fos and junB genes in striatum following morphine administration: implications for studies of memory. Behav Brain Res 66:225–230

    Article  CAS  PubMed  Google Scholar 

  39. Whitaker LR, Carneiro de Oliveira PE, McPherson KB, Fallon RV, Planeta CS, Bonci A, Hope BT (2016) Associative learning drives the formation of silent synapses in neuronal ensembles of the nucleus accumbens. Biol Psychiatry 80:246–256

    Google Scholar 

  40. Prast JM, Schardl A, Sartori SB, Singewald N, Saria A, Zernig G (2014) Increased conditioned place preference for cocaine in high anxiety related behavior (HAB) mice is associated with an increased activation in the accumbens corridor. Front Behav Neurosci 8:1–14

    Google Scholar 

  41. Castilla-Ortega E, Blanco E, Serrano A, Ladron de Guevara-Miranda D, Pedraz M, Estivill-Torrus G, Pavon FJ, Rodriguez de Fonseca F, Santin LJ (2016) Pharmacological reduction of adult hippocampal neurogenesis modifies functional brain circuits in mice exposed to a cocaine conditioned place preference paradigm. Addict Biol 21:575. doi:10.1111/adb.12248

    Article  CAS  PubMed  Google Scholar 

  42. Paxinos G, Watson C (2007) The rat brain in stereotaxic coordinates, 6th edn. Academic, San Diego, CA

    Google Scholar 

  43. Franklin KBJ, Paxinos G (2008) The mouse brain in stereotaxic coordinates, 3rd edn. Academic, San Diego, CA

    Google Scholar 

  44. Barone P, Morelli M, Cicarelli G, Cozzolino A, DeJoanna G, Campanella G, DiChiara G (1993) Expression of c-fos protein in the experimental epilepsy induced by pilocarpine. Synapse 14:1–9

    Article  CAS  PubMed  Google Scholar 

  45. Willoughby JO, Mackenzie L, Medvedev A, Hiscock JJ (1997) Fos induction following systemic kainic acid: early expression in hippocampus and later widespread expression correlated with seizure. Neuroscience 77:379–392

    Article  CAS  PubMed  Google Scholar 

  46. Mashimo T, Ohmori I, Ouchida M, Ohno Y, Tsurumi T, Miki T, Wakamori M, Ishihara S, Yoshida T, Takizawa A, Kato M, Hirabayashi M, Sasa M, Mori Y, Serikawa T (2010) A missense mutation of the gene encoding voltage-dependent sodium channel (Nav1.1) confers susceptibility to febrile seizures in rats. J Neurosci 30:5744–5753

    Article  CAS  PubMed  Google Scholar 

  47. Baulac S, Ishida S, Mashimo T, Boillot M, Fumoto N, Kuwamura M, Ohno Y, Takizawa A, Aoto T, Ueda M, Ikeda A, LeGuern E, Takahashi R, Serikawa T (2012) A rat model for LGI1-related epilepsies. Hum Mol Genet 21:3546–3557

    Article  CAS  PubMed  Google Scholar 

  48. Amano S, Ihara N, Uemura S, Yokoyama M, Ikeda M, Serikawa T, Sasahara M, Kataoka H, Hayase Y, Hazama F (1996) Development of a novel rat mutant with spontaneous limbic-like seizures. Am J Pathol 149:329–336

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Dragunow M, Robertson HA, Robertson GS (1988) Amygdala kindling and c-fos protein(s). Exp Neurol 102:261–263

    Article  CAS  PubMed  Google Scholar 

  50. Simjee SU, Shaheen F, Choudhary MI, Rahman AU, Jamall S, Shah SU, Khan N, Kabir N, Ashraf N (2012) Suppression of c-Fos protein and mRNA expression in pentylenetetrazole-induced kindled mouse brain by isoxylitones. J Mol Neurosci 47:559–570

    Article  CAS  PubMed  Google Scholar 

  51. Elble RJ (2009) Tremor: clinical features, pathophysiology, and treatment. Neurol Clin 27:679–695

    Article  PubMed  Google Scholar 

  52. Ohno Y, Shimizu S, Tatara A, Imaoku T, Ishii T, Sasa M, Serikawa T, Kuramoto T (2015) Hcn1 is a tremorgenic genetic component in a rat model of essential tremor. PLoS One 10:e0123529

    Article  PubMed  PubMed Central  Google Scholar 

  53. Miwa H, Nishi K, Fuwa T, Mizuno Y (2000) Differential expression of c-fos following administration of two tremorgenic agents: harmaline and oxotremorine. Neuroreport 11:2385–2390

    Article  CAS  PubMed  Google Scholar 

  54. Oldenbeuving AW, Eisenman LM, De Zeeuw CI, Ruigrok TJ (1999) Inferior olivary-induced expression of Fos-like immunoreactivity in the cerebellar nuclei of wild-type and Lurcher mice. Eur J Neurosci 11:3809–3822

    Article  CAS  PubMed  Google Scholar 

  55. Bertran-Gonzalez J, Bosch C, Maroteaux M, Matamales M, Herve D, Valjent E, Girault JA (2008) Opposing patterns of signaling activation in dopamine D1 and D2 receptor-expressing striatal neurons in response to cocaine and haloperidol. J Neurosci 28:5671–5685

    Article  CAS  PubMed  Google Scholar 

  56. Zhang J, Xu M (2006) Opposite regulation of cocaine-induced intracellular signaling and gene expression by dopamine D1 and D3 receptors. Ann N Y Acad Sci 1074:1–12

    Article  CAS  PubMed  Google Scholar 

  57. Adams MR, Brandon EP, Chartoff EH, Idzerda RL, Dorsa DM, McKnight GS (1997) Loss of haloperidol induced gene expression and catalepsy in protein kinase A-deficient mice. Proc Natl Acad Sci U S A 94:12157–12161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ishibashi T, Tagashira R, Nakamura M, Noguchi H, Ohno Y (1999) Effects of perospirone, a novel 5-HT2 and D2 receptor antagonist, on Fos protein expression in the rat forebrain. Pharmacol Biochem Behav 63:535–541

    Article  CAS  PubMed  Google Scholar 

  59. Merchant KM, Dorsa DM (1993) Differential induction of neurotensin and c-fos gene expression by typical versus atypical antipsychotics. Proc Natl Acad Sci U S A 90:3447–3451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Ohno Y, Shimizu S, Imaki J, Ishihara S, Sofue N, Sasa M, Kawai Y (2008) Anticataleptic 8-OH-DPAT preferentially counteracts with haloperidol-induced Fos expression in the dorsolateral striatum and the core region of the nucleus accumbens. Neuropharmacology 55:717–723

    Article  CAS  PubMed  Google Scholar 

  61. Robertson GS, Matsumura H, Fibiger HC (1994) Induction patterns of Fos-like immunoreactivity in the forebrain as predictors of atypical antipsychotic activity. J Pharmacol Exp Ther 271:1058–1066

    CAS  PubMed  Google Scholar 

  62. Ma J, Ye N, Cohen BM (2006) Expression of noradrenergic α1, serotoninergic 5HT2a and dopaminergic D2 receptors on neurons activated by typical and atypical antipsychotic drugs. Prog Neuropsychopharmacol Biol Psychiatry 30:647–657

    Article  CAS  PubMed  Google Scholar 

  63. Natesan S, Reckless GE, Nobrega JN, Fletcher PJ, Kapur S (2006) Dissociation between in vivo occupancy and functional antagonism of dopamine D2 receptors: comparing aripiprazole to other antipsychotics in animal models. Neuropsychopharmacology 31:1854–1863

    Article  CAS  PubMed  Google Scholar 

  64. Arout CA, Caldwell M, McCloskey DP, Kest B (2014) C-Fos activation in the periaqueductal gray following acute morphine-3beta-D-glucuronide or morphine administration. Physiol Behav 130:28–33

    Article  CAS  PubMed  Google Scholar 

  65. Hamlin AS, McNally GP, Westbrook RF, Osborne PB (2009) Induction of Fos proteins in regions of the nucleus accumbens and ventrolateral striatum correlates with catalepsy and stereotypic behaviours induced by morphine. Neuropharmacology 56:798–807

    Article  CAS  PubMed  Google Scholar 

  66. Pascual MM, Pastor V, Bernabeu RO (2009) Nicotine-conditioned place preference induced CREB phosphorylation and Fos expression in the adult rat brain. Psychopharmacology (Berl) 207:57–71

    Article  CAS  Google Scholar 

  67. Reznikov LR, Pasumarthi RK, Fadel JR (2009) Caffeine elicits c-Fos expression in horizontal diagonal band cholinergic neurons. Neuroreport 20:1609–1612

    Article  CAS  PubMed  Google Scholar 

  68. Retzbach EP, Dholakia PH, Duncan-Vaidya EA (2014) The effect of daily caffeine exposure on lever-pressing for sucrose and c-Fos expression in the nucleus accumbens in the rat. Physiol Behav 135:1–6

    Article  CAS  PubMed  Google Scholar 

  69. Li B, Suemaru K, Kitamura Y, Gomita Y, Araki H, Cui R (2013) Imipramine-induced c-Fos expression in the medial prefrontal cortex is decreased in the ACTH-treated rats. J Biochem Mol Toxicol 27:486–491

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This chapter was supported in part by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology of Japan (No. 26460111 and 15H04892) and from the Japan Agency for Medical Research and Development (15ek0109120s0701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukihiro Ohno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Iha, H.A. et al. (2017). Immunohistochemical Analysis of Fos Protein Expression for Exploring Brain Regions Related to Central Nervous System Disorders and Drug Actions. In: Philippu, A. (eds) In Vivo Neuropharmacology and Neurophysiology. Neuromethods, vol 121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6490-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6490-1_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6488-8

  • Online ISBN: 978-1-4939-6490-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics