Skip to main content

Modeling Schizophrenia: Focus on Developmental Models

  • Protocol
  • First Online:
In Vivo Neuropharmacology and Neurophysiology

Part of the book series: Neuromethods ((NM,volume 121))

Abstract

Schizophrenia is a chronic, severe and disabling brain disorder that affects more than 21 million people around the world. Despite a tremendous amount of research effort, the etiopathology of schizophrenia is little understood. Reliable and predictive animal models are essential to increase our understanding of the neurobiological basis of the disorder and for the development of novel antipsychotics with improved therapeutic efficacy and tolerable side effects. A favorite working hypothesis is the so-called two-hit theory. Developmental animal models of schizophrenia are a valuable heuristic tool which focuses on this aspect. Manipulations of the environment, drug administration, or discrete surgical intervention during the sensitive prenatal or postnatal period induce a reorganization of neuronal circuits resulting in irreversible changes in central nervous system (CNS) function, which typically appear after puberty. These models are considered superior, since they can include different schizophrenia-relevant brain and behavioral pathologies and incorporate the developmental component of the disorder.

This review aims to summarize methodological and predictive aspects of three developmental animal models for research on schizophrenia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nuechterlein KH, Robbins TW, Einat H (2005) Distinguishing separable domains of cognition in human and animal studies: what separations are optimal for targeting interventions? A summary of recommendations from breakout group 2 at the measurement and treatment research to improve cognition in schizophrenia new approaches conference. Schizophr Bull 31:870–874

    Article  PubMed  Google Scholar 

  2. McGrath JJ (2006) Variations in the incidence of schizophrenia: data versus dogma. Schizophr Bull 32:195–197

    Article  PubMed  PubMed Central  Google Scholar 

  3. Barajas A, Ochoa S, Obiols JE et al (2015) Gender differences in individuals at high-risk of psychosis: a comprehensive literature review. ScientificWorldJournal 2015:430735

    Article  PubMed  PubMed Central  Google Scholar 

  4. Veling W (2013) Ethnic minority position and risk for psychotic disorders. Curr Opin Psychiatry 26:166–171

    Article  PubMed  Google Scholar 

  5. Bourque F, van der Ven E, Malla A (2011) A meta-analysis of the risk for psychotic disorders among first- and second-generation immigrants. Psychol Med 41:897–910

    Article  CAS  PubMed  Google Scholar 

  6. McGrath J, Saha S, Chant D et al (2008) Schizophrenia: a concise overview of incidence, prevalence, and mortality. Epidemiol Rev 30:67–76

    Article  PubMed  Google Scholar 

  7. Cantor-Graae E (2007) The contribution of social factors to the development of schizophrenia: a review of recent findings. Can J Psychiatry 52:277–286

    PubMed  Google Scholar 

  8. Cantor-Graae E, Selten JP (2005) Schizophrenia and migration: a meta-analysis and review. Am J Psychiatry 162:12–24

    Article  PubMed  Google Scholar 

  9. Escudero I, Johnstone M (2014) Genetics of schizophrenia. Curr Psychiatry Rep 16:502

    Article  PubMed  Google Scholar 

  10. Giusti-Rodriguez P, Sullivan PF (2013) The genomics of schizophrenia: update and implications. J Clin Invest 123:4557–4563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Singh S, Kumar A, Agarwal S et al (2014) Genetic insight of schizophrenia: past and future perspectives. Gene 535:97–100

    Article  CAS  PubMed  Google Scholar 

  12. Kukshal P, Thelma BK, Nimgaonkar VL et al (2012) Genetics of schizophrenia from a clinical perspective. Int Rev Psychiatry 24:393–404

    Article  PubMed  Google Scholar 

  13. Girard SL, Dion PA, Rouleau GA (2012) Schizophrenia genetics: putting all the pieces together. Curr Neurol Neurosci Rep 12:261–266

    Article  CAS  PubMed  Google Scholar 

  14. Mulle JG (2012) Schizophrenia genetics: progress, at last. Curr Opin Genet Dev 22:238–244

    Article  CAS  PubMed  Google Scholar 

  15. Rethelyi JM, Benkovits J, Bitter I (2013) Genes and environments in schizophrenia: the different pieces of a manifold puzzle. Neurosci Biobehav Rev 37:2424–2437

    Article  CAS  PubMed  Google Scholar 

  16. Bayer TA, Falkai P, Maier W (1999) Genetic and non-genetic vulnerability factors in schizophrenia: the basis of the “two hit hypothesis”. J Psychiatr Res 33:543–548

    Article  CAS  PubMed  Google Scholar 

  17. Maynard TM, Sikich L, Lieberman JA et al (2001) Neural development, cell-cell signaling, and the “two-hit” hypothesis of schizophrenia. Schizophr Bull 27:457–476

    Article  CAS  PubMed  Google Scholar 

  18. Weinberger DR (1987) Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 44:660–669

    Article  CAS  PubMed  Google Scholar 

  19. Willner P (1986) Validation criteria for animal models of human mental disorders: learned helplessness as a paradigm case. Prog Neuropsychopharmacol Biol Psychiatry 10:677–690

    Article  CAS  PubMed  Google Scholar 

  20. van der Staay FJ (2006) Animal models of behavioral dysfunctions: basic concepts and classifications, and an evaluation strategy. Brain Res Rev 52:131–159

    Article  PubMed  Google Scholar 

  21. Akil M, Pierri JN, Whitehead RE et al (1999) Lamina-specific alterations in the dopamine innervation of the prefrontal cortex in schizophrenic subjects. Am J Psychiatry 156:1580–1589

    Article  CAS  PubMed  Google Scholar 

  22. Lau CI, Wang HC, Hsu JL et al (2013) Does the dopamine hypothesis explain schizophrenia? Rev Neurosci 24:389–400

    Article  CAS  PubMed  Google Scholar 

  23. Howes OD, Kapur S (2014) A neurobiological hypothesis for the classification of schizophrenia: type A (hyperdopaminergic) and type B (normodopaminergic). Br J Psychiatry 205:1–3

    Article  PubMed  Google Scholar 

  24. Howes OD, Kapur S (2009) The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr Bull 35:549–562

    Article  PubMed  PubMed Central  Google Scholar 

  25. Carlsson A, Lindqvist M (1963) Effect of chlorpromazine or haloperidol on formation of 3methoxytyramine and normetanephrine in mouse brain. Acta Pharmacol Toxicol (Copenh) 20:140–144

    Article  CAS  Google Scholar 

  26. Olney JW, Newcomer JW, Farber NB (1999) NMDA receptor hypofunction model of schizophrenia. J Psychiatr Res 33:523–533

    Article  CAS  PubMed  Google Scholar 

  27. Laruelle M (2014) Schizophrenia: from dopaminergic to glutamatergic interventions. Curr Opin Pharmacol 14:97–102

    Article  CAS  PubMed  Google Scholar 

  28. Winchester CL, Pratt JA, Morris BJ (2014) Risk genes for schizophrenia: translational opportunities for drug discovery. Pharmacol Ther 143:34–50

    Article  CAS  PubMed  Google Scholar 

  29. Hida H, Mouri A, Noda Y (2013) Behavioral phenotypes in schizophrenic animal models with multiple combinations of genetic and environmental factors. J Pharmacol Sci 121:185–191

    Article  CAS  PubMed  Google Scholar 

  30. Moran PM, O’Tuathaigh CM, Papaleo F et al (2014) Dopaminergic function in relation to genes associated with risk for schizophrenia: translational mutant mouse models. Prog Brain Res 211:79–112

    Article  CAS  PubMed  Google Scholar 

  31. Ng E, McGirr A, Wong AH et al (2013) Using rodents to model schizophrenia and substance use comorbidity. Neurosci Biobehav Rev 37:896–910

    Article  PubMed  Google Scholar 

  32. Arguello PA, Markx S, Gogos JA et al (2010) Development of animal models for schizophrenia. Dis Model Mech 3:22–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Keshavan MS (1999) Development, disease and degeneration in schizophrenia: a unitary pathophysiological model. J Psychiatr Res 33:513–521

    Article  CAS  PubMed  Google Scholar 

  34. Gruber AJ, Calhoon GG, Shusterman I et al (2010) More is less: a disinhibited prefrontal cortex impairs cognitive flexibility. J Neurosci 30:17102–17110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tseng KY, Chambers RA, Lipska BK (2009) The neonatal ventral hippocampal lesion as a heuristic neurodevelopmental model of schizophrenia. Behav Brain Res 204:295–305

    Article  PubMed  Google Scholar 

  36. Lazar NL, Rajakumar N, Cain DP (2008) Injections of NGF into neonatal frontal cortex decrease social interaction as adults: a rat model of schizophrenia. Schizophr Bull 34:127–136

    Article  PubMed  Google Scholar 

  37. Lipska BK, Weinberger DR (2002) A neurodevelopmental model of schizophrenia: neonatal disconnection of the hippocampus. Neurotox Res 4:469–475

    Article  PubMed  Google Scholar 

  38. Lazcano Z, Solis O, Diaz A et al (2015) Dendritic morphology changes in neurons from the ventral hippocampus, amygdala and nucleus accumbens in rats with neonatal lesions into the prefrontal cortex. Synapse 69:314

    Article  CAS  PubMed  Google Scholar 

  39. Swerdlow NR, Halim N, Hanlon FM et al (2001) Lesion size and amphetamine hyperlocomotion after neonatal ventral hippocampal lesions: more is less. Brain Res Bull 55:71–77

    Article  CAS  PubMed  Google Scholar 

  40. Sarter M, Bruno JP (2002) Animal models in biological psychiatry. In: D’Haenen H, den Boer JA, Willner P (eds) Biological psychiatry. John Wiley Sons, Chichester

    Google Scholar 

  41. Elvevag B, Goldberg TE (2000) Cognitive impairment in schizophrenia is the core of the disorder. Crit Rev Neurobiol 14:1–21

    Article  CAS  PubMed  Google Scholar 

  42. Keefe RS, Harvey PD (2012) Cognitive impairment in schizophrenia. In: Geyer MA, Gross G (eds) Novel antischizophrenia treatments. Springer, Berlin

    Google Scholar 

  43. Weickert TW, Goldberg TE, Gold JM et al (2000) Cognitive impairments in patients with schizophrenia displaying preserved and compromised intellect. Arch Gen Psychiatry 57:907–913

    Article  CAS  PubMed  Google Scholar 

  44. Leeson VC, Barnes TR, Hutton SB et al (2009) IQ as a predictor of functional outcome in schizophrenia: a longitudinal, four-year study of first-episode psychosis. Schizophr Res 107:55–60

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jones CA, Watson DJ, Fone KC (2011) Animal models of schizophrenia. Br J Pharmacol 164:1162–1194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koch M (2013) Clinical relevance of animal models of schizophrenia. Suppl Clin Neurophysiol 62:113–120

    Article  PubMed  Google Scholar 

  47. Mouri A, Nagai T, Ibi D, Yamada K (2013) Animal models of schizophrenia for molecular and pharmacological intervention and potential candidate molecules. Neurobiol Dis 53:61–74

    Article  CAS  PubMed  Google Scholar 

  48. Wilson CA, Koenig JI (2014) Social interaction and social withdrawal in rodents as readouts for investigating the negative symptoms of schizophrenia. Eur Neuropsychopharmacol 24:759–773

    Article  CAS  PubMed  Google Scholar 

  49. Young JW, Zhou X, Geyer MA (2010) Animal models of schizophrenia. Curr Top Behav Neurosci 4:391–433

    Article  PubMed  Google Scholar 

  50. Young JW, Amitai N, Geyer MA (2012) Behavioral animal models to assess pro-cognitive treatments for schizophrenia. Handb Exp Pharmacol (213):39–79

    Google Scholar 

  51. Powell SB (2010) Models of neurodevelopmental abnormalities in schizophrenia. Curr Top Behav Neurosci 4:435–481

    Article  PubMed  PubMed Central  Google Scholar 

  52. Becker A, Eyles DW, McGrath JJ et al (2005) Transient prenatal vitamin D deficiency is associated with subtle alterations in learning and memory functions in adult rats. Behav Brain Res 161(2):306

    Article  CAS  PubMed  Google Scholar 

  53. Davies G, Ahmad F, Chant D et al (2000) Seasonality of first admissions for schizophrenia in the Southern Hemisphere. Schizophr Res 41:457–462

    Article  CAS  PubMed  Google Scholar 

  54. Davies G, Welham J, Chant D et al (2003) A systematic review and meta-analysis of Northern Hemisphere season of birth studies in schizophrenia. Schizophr Bull 29:587–593

    Article  PubMed  Google Scholar 

  55. Eyles DW, Feron F, Cui X (2009) Developmental vitamin D deficiency causes abnormal brain development. Psychoneuroendocrinology 34(Suppl 1):S247–S257

    Article  CAS  PubMed  Google Scholar 

  56. McGrath JJ, Burne TH, Feron F (2010) Developmental vitamin D deficiency and risk of schizophrenia: a 10-year update. Schizophr Bull 36:1073–1078

    Article  PubMed  PubMed Central  Google Scholar 

  57. Saha S, Chant D, McGrath J (2008) Meta-analyses of the incidence and prevalence of schizophrenia: conceptual and methodological issues. Int J Methods Psychiatr Res 17:55–61

    Article  PubMed  Google Scholar 

  58. Torrey EF, Miller J, Rawlings R et al (1997) Seasonality of births in schizophrenia and bipolar disorder: a review of the literature. Schizophr Res 28:1–38

    Article  CAS  PubMed  Google Scholar 

  59. Graham KA, Keefe RS, Lieberman JA et al (2014) Relationship of low vitamin D status with positive, negative and cognitive symptom domains in people with first-episode schizophrenia. Early Interv Psychiatry 9:397

    Article  PubMed  Google Scholar 

  60. Cieslak K, Feingold J, Antonius D et al (2014) Low vitamin D levels predict clinical features of schizophrenia. Schizophr Res 159:543–545

    Article  PubMed  PubMed Central  Google Scholar 

  61. Eyles DW, Burne TH, McGrath JJ (2013) Vitamin D, effects on brain development, adult brain function and the links between low levels of vitamin D and neuropsychiatric disease. Front Neuroendocrinol 34:47–64

    Article  CAS  PubMed  Google Scholar 

  62. McGrath J (1999) Hypothesis: is low prenatal vitamin D a risk-modifying factor for schizophrenia? Schizophr Res 40:173–177

    Article  CAS  PubMed  Google Scholar 

  63. Eyles DW, Rogers F, Buller K et al (2006) Developmental vitamin D (DVD) deficiency in the rat alters adult behaviour independently of HPA function. Psychoneuroendocrinology 31:958–964

    Article  CAS  PubMed  Google Scholar 

  64. Burne TH, O’Loan J, Splatt K et al (2011) Developmental vitamin D (DVD) deficiency alters pup-retrieval but not isolation-induced pup ultrasonic vocalizations in the rat. Physiol Behav 102:201–204

    Article  CAS  PubMed  Google Scholar 

  65. Burne TH, Becker A, Brown J et al (2004) Transient prenatal Vitamin D deficiency is associated with hyperlocomotion in adult rats. Behav Brain Res 154:549–555

    Article  CAS  PubMed  Google Scholar 

  66. Harms LR, Eyles DW, McGrath JJ et al (2008) Developmental vitamin D deficiency alters adult behaviour in 129/SvJ and C57BL/6J mice. Behav Brain Res 187:343–350

    Article  CAS  PubMed  Google Scholar 

  67. Harms LR, Cowin G, Eyles DW et al (2012) Neuroanatomy and psychomimetic-induced locomotion in C57BL/6J and 129/X1SvJ mice exposed to developmental vitamin D deficiency. Behav Brain Res 230:125–131

    Article  CAS  PubMed  Google Scholar 

  68. McGrath JJ, Feron FP, Burne TH et al (2004) Vitamin D3-implications for brain development. J Steroid Biochem Mol Biol 89–90:557–560

    Article  PubMed  CAS  Google Scholar 

  69. Eyles D, Brown J, Kay-Sim A et al (2003) Vitamin D3 and brain development. Neuroscience 118:641–653

    Article  CAS  PubMed  Google Scholar 

  70. Ko P, Burkert R, McGrath J, Eyles D (2004) Maternal vitamin D3 deprivation and the regulation of apoptosis and cell cycle during rat brain development. Brain Res Dev Brain Res 153:61–68

    Article  CAS  PubMed  Google Scholar 

  71. Keilhoff G, Grecksch G, Becker A (2010) Haloperidol normalized prenatal vitamin D depletion-induced reduction of hippocampal cell proliferation in adult rats. Neurosci Lett 476:94–98

    Article  CAS  PubMed  Google Scholar 

  72. Cui X, McGrath JJ, Burne TH et al (2007) Maternal vitamin D depletion alters neurogenesis in the developing rat brain. Int J Dev Neurosci 25:227–232

    Article  CAS  PubMed  Google Scholar 

  73. Kesby JP, O’Loan JC, Alexander S et al (2012) Developmental vitamin D deficiency alters MK-801-induced behaviours in adult offspring. Psychopharmacology (Berl) 220:455–463

    Article  CAS  Google Scholar 

  74. Kesby JP, Burne TH, McGrath JJ et al (2006) Developmental vitamin D deficiency alters MK 801-induced hyperlocomotion in the adult rat: an animal model of schizophrenia. Biol Psychiatry 60:591–596

    Article  CAS  PubMed  Google Scholar 

  75. Kesby JP, Cui X, O’Loan J et al (2010) Developmental vitamin D deficiency alters dopamine-mediated behaviors and dopamine transporter function in adult female rats. Psychopharmacology (Berl) 208:159–168

    Article  CAS  Google Scholar 

  76. Burne TH, Alexander S, Turner KM et al (2014) Developmentally vitamin D-deficient rats show enhanced prepulse inhibition after acute Delta9-tetrahydrocannabinol. Behav Pharmacol 25:236–244

    Article  CAS  PubMed  Google Scholar 

  77. Arseneault L, Cannon M, Witton J et al (2004) Causal association between cannabis and psychosis: examination of the evidence. Br J Psychiatry 184:110–117

    Article  PubMed  Google Scholar 

  78. Lubow RE, Gewirtz JC (1995) Latent inhibition in humans: data, theory, and implications for schizophrenia. Psychol Bull 117:87–103

    Article  CAS  PubMed  Google Scholar 

  79. Lubow RE (2005) Construct validity of the animal latent inhibition model of selective attention deficits in schizophrenia. Schizophr Bull 31:139–153

    Article  CAS  PubMed  Google Scholar 

  80. Granger KT, Prados J, Young AM (2012) Disruption of overshadowing and latent inhibition in high schizotypy individuals. Behav Brain Res 233:201–208

    Article  CAS  PubMed  Google Scholar 

  81. Turner KM, Young JW, McGrath JJ et al (2013) Cognitive performance and response inhibition in developmentally vitamin D (DVD)-deficient rats. Behav Brain Res 242:47–53

    Article  CAS  PubMed  Google Scholar 

  82. Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Grecksch G, Rüthrich H, Höllt V et al (2009) Transient prenatal vitamin D deficiency is associated with changes of synaptic plasticity in the dentate gyrus in adult rats. Psychoneuroendocrinology 34(Suppl 1):S258–S264

    Article  CAS  PubMed  Google Scholar 

  84. Becker A, Grecksch G (2006) Pharmacological treatment to augment hole board habituation in prenatal Vitamin D-deficient rats. Behav Brain Res 166:177–183

    Article  CAS  PubMed  Google Scholar 

  85. Bernstein HG, Bogerts B, Keilhoff G (2005) The many faces of nitric oxide in schizophrenia. A review. Schizophr Res 78:69–86

    Article  PubMed  Google Scholar 

  86. Bernstein HG, Keilhoff G, Steiner J et al (2011) Nitric oxide and schizophrenia: present knowledge and emerging concepts of therapy. CNS Neurol Disord Drug Targets 10:792–807

    Article  CAS  PubMed  Google Scholar 

  87. Nasyrova RF, Ivashchenko DV, Ivanov MV et al (2015) Role of nitric oxide and related molecules in schizophrenia pathogenesis: biochemical, genetic and clinical aspects. Front Physiol 6:139. doi:10.3389/fphys.2015.00139

    Article  PubMed  PubMed Central  Google Scholar 

  88. Gibbs SM (2003) Regulation of neuronal proliferation and differentiation by nitric oxide. Mol Neurobiol 27:107–120

    Article  CAS  PubMed  Google Scholar 

  89. Masters BS, McMillan K, Sheta EA et al (1996) Neuronal nitric oxide synthase, a modular enzyme formed by convergent evolution: structure studies of a cysteine thiolate-liganded heme protein that hydroxylates L-arginine to produce NO, as a cellular signal. FASEB J 10:552–558

    CAS  PubMed  Google Scholar 

  90. Akbarian S, Bunney WE Jr, Potkin SG et al (1993) Altered distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase cells in frontal lobe of schizophrenics implies disturbances of cortical development. Arch Gen Psychiatry 50:169–177

    Article  CAS  PubMed  Google Scholar 

  91. Akbarian S, Vinuela A, Kim JJ et al (1993) Distorted distribution of nicotinamide-adenine dinucleotide phosphate-diaphorase neurons in temporal lobe of schizophrenics implies anomalous cortical development. Arch Gen Psychiatry 50:178–187

    Article  CAS  PubMed  Google Scholar 

  92. Black MD, Selk DE, Hitchcock JM et al (1999) On the effect of neonatal nitric oxide synthase inhibition in rats: a potential neurodevelopmental model of schizophrenia. Neuropharmacology 38:1299–1306

    Article  CAS  PubMed  Google Scholar 

  93. Dwyer MA, Bredt DS, Snyder SH (1991) Nitric oxide synthase: irreversible inhibition by L-NG-nitroarginine in brain in vitro and in vivo. Biochem Biophys Res Commun 176:1136–1141

    Article  CAS  PubMed  Google Scholar 

  94. Ogilvie P, Schilling K, Billingsley ML et al (1995) Induction and variants of neuronal nitric oxide synthase type I during synaptogenesis. FASEB J 9:799–806

    CAS  PubMed  Google Scholar 

  95. Morales-Medina JC, Mejorada A, Romero-Curiel A et al (2008) Neonatal administration of N-omega-nitro-L-arginine induces permanent decrease in NO levels and hyperresponsiveness to locomotor activity by D-amphetamine in postpubertal rats. Neuropharmacology 55:1313–1320

    Article  CAS  PubMed  Google Scholar 

  96. Barak S, Arad M, De Levie A et al (2009) Pro-cognitive and antipsychotic efficacy of the alpha7 nicotinic partial agonist SSR180711 in pharmacological and neurodevelopmental latent inhibition models of schizophrenia. Neuropsychopharmacology 34:1753–1763

    Article  CAS  PubMed  Google Scholar 

  97. Black MD, Varty GB, Arad M et al (2009) Procognitive and antipsychotic efficacy of glycine transport 1 inhibitors (GlyT1) in acute and neurodevelopmental models of schizophrenia: latent inhibition studies in the rat. Psychopharmacology (Berl) 202:385–396

    Article  CAS  Google Scholar 

  98. Semba J, Watanabe H, Suhara T et al (2000) Neonatal treatment with L-name (NG-nitro-L-arginine methyl ester) attenuates stereotyped behavior induced by acute methamphetamine but not development of behavioral sensitization to methamphetamine. Prog Neuropsychopharmacol Biol Psychiatry 24:1017–1023

    Article  CAS  PubMed  Google Scholar 

  99. Dec AM, Kohlhaas KL, Nelson CL et al (2014) Impact of neonatal NOS-1 inhibitor exposure on neurobehavioural measures and prefrontal-temporolimbic integration in the rat nucleus accumbens. Int J Neuropsychopharmacol 17:275–287

    Article  CAS  PubMed  Google Scholar 

  100. Morales-Medina JC, Mejorada A, Romero-Curiel A et al (2007) Alterations in dendritic morphology of hippocampal neurons in adult rats after neonatal administration of N-omega-nitro-L-arginine. Synapse 61:785–789

    Article  CAS  PubMed  Google Scholar 

  101. Black MD, Simmonds J, Senyah Y et al (2002) Neonatal nitric oxide synthase inhibition: social interaction deficits in adulthood and reversal by antipsychotic drugs. Neuropharmacology 42:414–420

    Article  CAS  PubMed  Google Scholar 

  102. Harvey RJ, Yee BK (2013) Glycine transporters as novel therapeutic targets in schizophrenia, alcohol dependence and pain. Nat Rev Drug Discov 12:866–885

    Article  CAS  PubMed  Google Scholar 

  103. Harsing LG Jr, Matyus P (2013) Mechanisms of glycine release, which build up synaptic and extrasynaptic glycine levels: the role of synaptic and non-synaptic glycine transporters. Brain Res Bull 93:110–119

    Article  CAS  PubMed  Google Scholar 

  104. Chue P (2013) Glycine reuptake inhibition as a new therapeutic approach in schizophrenia: focus on the glycine transporter 1 (GlyT1). Curr Pharm Des 19:1311–1320

    CAS  PubMed  Google Scholar 

  105. Jones KM, McDonald IM, Bourin C et al (2014) Effect of alpha7 nicotinic acetylcholine receptor agonists on attentional set-shifting impairment in rats. Psychopharmacology (Berl) 231:673–683

    Article  CAS  Google Scholar 

  106. Young JW, Geyer MA (2013) Evaluating the role of the alpha-7 nicotinic acetylcholine receptor in the pathophysiology and treatment of schizophrenia. Biochem Pharmacol 86:1122–1132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Adler LE, Olincy A, Waldo M et al (1998) Schizophrenia, sensory gating, and nicotinic receptors. Schizophr Bull 24:189–202

    Article  CAS  PubMed  Google Scholar 

  108. Lipska BK (2004) Using animal models to test a neurodevelopmental hypothesis of schizophrenia. J Psychiatry Neurosci 29:282–286

    PubMed  PubMed Central  Google Scholar 

  109. Lipska BK, Weinberger DR (1995) Genetic variation in vulnerability to the behavioral effects of neonatal hippocampal damage in rats. Proc Natl Acad Sci U S A 92:8906–8910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Wood GK, Lipska BK, Weinberger DR (1997) Behavioral changes in rats with early ventral hippocampal damage vary with age at damage. Brain Res Dev Brain Res 101:17–25

    Article  CAS  PubMed  Google Scholar 

  111. Becker A, Grecksch G, Bernstein HG et al (1999) Social behaviour in rats lesioned with ibotenic acid in the hippocampus: quantitative and qualitative analysis. Psychopharmacology (Berl) 144:333–338

    Article  CAS  Google Scholar 

  112. Grecksch G, Bernstein HG, Becker A et al (1999) Disruption of latent inhibition in rats with postnatal hippocampal lesions. Neuropsychopharmacology 20:525–532

    Article  CAS  PubMed  Google Scholar 

  113. Lipska BK, Swerdlow NR, Geyer MA et al (1995) Neonatal excitotoxic hippocampal damage in rats causes post-pubertal changes in prepulse inhibition of startle and its disruption by apomorphine. Psychopharmacology (Berl) 122:35–43

    Article  CAS  Google Scholar 

  114. Sams-Dodd F, Lipska BK, Weinberger DR (1997) Neonatal lesions of the rat ventral hippocampus result in hyperlocomotion and deficits in social behaviour in adulthood. Psychopharmacology (Berl) 132:303–310

    Article  CAS  Google Scholar 

  115. Swerdlow NR, Light GA, Breier MR et al (2012) Sensory and sensorimotor gating deficits after neonatal ventral hippocampal lesions in rats. Dev Neurosci 34:240–249

    Article  CAS  PubMed  Google Scholar 

  116. Sandner G, Meyer L, Angst MJ et al (2012) Neonatal ventral hippocampal lesions modify pain perception and evoked potentials in rats. Behav Brain Res 234:167–174

    Article  PubMed  Google Scholar 

  117. Lipska BK, Halim ND, Segal PN et al (2002) Effects of reversible inactivation of the neonatal ventral hippocampus on behavior in the adult rat. J Neurosci 22:2835–2842

    CAS  PubMed  Google Scholar 

  118. Marquis JP, Goulet S, Dore FY (2006) Neonatal lesions of the ventral hippocampus in rats lead to prefrontal cognitive deficits at two maturational stages. Neuroscience 140:759–767

    Article  CAS  PubMed  Google Scholar 

  119. Al-Amin HA, Shannon WC, Weinberger DR et al (2001) Delayed onset of enhanced MK-801-induced motor hyperactivity after neonatal lesions of the rat ventral hippocampus. Biol Psychiatry 49:528–539

    Article  CAS  PubMed  Google Scholar 

  120. Lipska BK, Jaskiw GE, Weinberger DR (1993) Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology 9:67–75

    Article  CAS  PubMed  Google Scholar 

  121. Bringas ME, Morales-Medina JC, Flores-Vivaldo Y et al (2012) Clozapine administration reverses behavioral, neuronal, and nitric oxide disturbances in the neonatal ventral hippocampus rat. Neuropharmacology 62:1848–1857

    Article  CAS  PubMed  Google Scholar 

  122. Negrete-Diaz JV, Baltazar-Gaytan E, Bringas ME et al (2010) Neonatal ventral hippocampus lesion induces increase in nitric oxide [NO] levels which is attenuated by subchronic haloperidol treatment. Synapse 64:941–947

    Article  CAS  PubMed  Google Scholar 

  123. Al-Amin HA, Weinberger DR, Lipska BK (2000) Exaggerated MK-801-induced motor hyperactivity in rats with the neonatal lesion of the ventral hippocampus. Behav Pharmacol 11:269–278

    Article  CAS  PubMed  Google Scholar 

  124. Lillrank SM, Lipska BK, Kolachana BS et al (1999) Attenuated extracellular dopamine levels after stress and amphetamine in the nucleus accumbens of rats with neonatal ventral hippocampal damage. J Neural Transm 106:183–196

    Article  CAS  PubMed  Google Scholar 

  125. Archer T (2010) Neurodegeneration in schizophrenia. Expert Rev Neurother 10:1131–1141

    Article  PubMed  Google Scholar 

  126. Swerdlow NR, Lipska BK, Weinberger DR et al (1995) Increased sensitivity to the sensorimotor gating-disruptive effects of apomorphine after lesions of medial prefrontal cortex or ventral hippocampus in adult rats. Psychopharmacology (Berl) 122:27–34

    Article  CAS  Google Scholar 

  127. Kamath A, Al-Khairi I, Bhardwaj S et al (2008) Enhanced alpha1 adrenergic sensitivity in sensorimotor gating deficits in neonatal ventral hippocampus-lesioned rats. Int J Neuropsychopharmacol 11:1085–1096

    Article  CAS  PubMed  Google Scholar 

  128. Ouhaz Z, Ba-M’hamed S, Bennis M (2014) Haloperidol treatment at pre-exposure phase reduces the disturbance of latent inhibition in rats with neonatal ventral hippocampus lesions. C R Biol 337:561–570

    Article  PubMed  Google Scholar 

  129. Rueter LE, Ballard ME, Gallagher KB et al (2004) Chronic low dose risperidone and clozapine alleviate positive but not negative symptoms in the rat neonatal ventral hippocampal lesion model of schizophrenia. Psychopharmacology (Berl) 176:312–319

    Article  CAS  Google Scholar 

  130. Vazquez-Roque RA, Ramos B, Tecuatl C et al (2012) Chronic administration of the neurotrophic agent cerebrolysin ameliorates the behavioral and morphological changes induced by neonatal ventral hippocampus lesion in a rat model of schizophrenia. J Neurosci Res 90:288–306

    Article  CAS  PubMed  Google Scholar 

  131. Daenen EW, Wolterink G, Gerrits MA et al (2002) The effects of neonatal lesions in the amygdala or ventral hippocampus on social behaviour later in life. Behav Brain Res 136:571–582

    Article  PubMed  Google Scholar 

  132. Lipska BK, Aultman JM, Verma A et al (2002) Neonatal damage of the ventral hippocampus impairs working memory in the rat. Neuropsychopharmacology 27:47–54

    Article  PubMed  Google Scholar 

  133. Chambers RA, Moore J, McEvoy JP et al (1996) Cognitive effects of neonatal hippocampal lesions in a rat model of schizophrenia. Neuropsychopharmacology 15:587–594

    Article  CAS  PubMed  Google Scholar 

  134. Lecourtier L, Antal MC, Cosquer B et al (2012) Intact neurobehavioral development and dramatic impairments of procedural-like memory following neonatal ventral hippocampal lesion in rats. Neuroscience 207:110–123

    Article  CAS  PubMed  Google Scholar 

  135. Brady AM, Saul RD, Wiest MK (2010) Selective deficits in spatial working memory in the neonatal ventral hippocampal lesion rat model of schizophrenia. Neuropharmacology 59:605–611

    Article  CAS  PubMed  Google Scholar 

  136. Becker A, Grecksch G (2000) Social memory is impaired in neonatally ibotenic acid lesioned rats. Behav Brain Res 109:137–140

    Article  CAS  PubMed  Google Scholar 

  137. Manoach DS (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 60:285–298

    Article  PubMed  Google Scholar 

  138. Tseng KY, Lewis BL, Hashimoto T et al (2008) A neonatal ventral hippocampal lesion causes functional deficits in adult prefrontal cortical interneurons. J Neurosci 28:12691–12699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. O’Donnell P (2012) Cortical disinhibition in the neonatal ventral hippocampal lesion model of schizophrenia: new vistas on possible therapeutic approaches. Pharmacol Ther 133:19–25

    Article  PubMed  CAS  Google Scholar 

  140. Gallo A, Bouchard C, Rompre PP (2014) Animals with a schizophrenia-like phenotype are differentially sensitive to the motivational effects of cannabinoid agonists in conditioned place preference. Behav Brain Res 268:202–212

    Article  CAS  PubMed  Google Scholar 

  141. Karlsson RM, Kircher DM, Shaham Y et al (2013) Exaggerated cue-induced reinstatement of cocaine seeking but not incubation of cocaine craving in a developmental rat model of schizophrenia. Psychopharmacology (Berl) 226:45–51

    Article  CAS  Google Scholar 

  142. Berg SA, Czachowski CL, Chambers RA (2011) Alcohol seeking and consumption in the NVHL neurodevelopmental rat model of schizophrenia. Behav Brain Res 218:346–349

    Article  CAS  PubMed  Google Scholar 

  143. Conroy SK, Rodd Z, Chambers RA (2007) Ethanol sensitization in a neurodevelopmental lesion model of schizophrenia in rats. Pharmacol Biochem Behav 86:386–394

    Article  CAS  PubMed  Google Scholar 

  144. Le Pen G, Gaudet L, Mortas P et al (2002) Deficits in reward sensitivity in a neurodevelopmental rat model of schizophrenia. Psychopharmacology (Berl) 161:434–441

    Article  CAS  Google Scholar 

  145. Berg SA, Chambers RA (2008) Accentuated behavioral sensitization to nicotine in the neonatal ventral hippocampal lesion model of schizophrenia. Neuropharmacology 54:1201–1207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  146. Levesque M, Potvin S, Marchand S et al (2012) Pain perception in schizophrenia: evidence of a specific pain response profile. Pain Med 13:1571–1579

    Article  PubMed  Google Scholar 

  147. Al Amin HA, Atweh SF, Jabbur SJ et al (2004) Effects of ventral hippocampal lesion on thermal and mechanical nociception in neonates and adult rats. Eur J Neurosci 20:3027–3034

    Article  PubMed  Google Scholar 

  148. Jaramillo-Loranca BE, Garces-Ramirez L, Munguia Rosales AA et al (2015) The sigma agonist 1,3-di-o-tolyl-guanidine reduces the morphological and behavioral changes induced by neonatal ventral hippocampus lesion in rats. Synapse 69:213–225

    Article  CAS  PubMed  Google Scholar 

  149. Le Pen G, Moreau JL (2002) Disruption of prepulse inhibition of startle reflex in a neurodevelopmental model of schizophrenia: reversal by clozapine, olanzapine and risperidone but not by haloperidol. Neuropsychopharmacology 27:1–11

    Article  PubMed  Google Scholar 

  150. Le Pen G, Kew J, Alberati D, Borroni E et al (2003) Prepulse inhibition deficits of the startle reflex in neonatal ventral hippocampal-lesioned rats: reversal by glycine and a glycine transporter inhibitor. Biol Psychiatry 54:1162–1170

    Article  PubMed  CAS  Google Scholar 

  151. Chambers RA, Lipska BK (2011) A method to the madness: producing the neonatal ventral hippocampal lesion rat model of schizophrenia. In: O’Donnell P (ed) Animal models of schizophrenia and related disorders. Humana, New York, NY

    Google Scholar 

  152. Blas-Valdivia V, Cano-Europa E, Hernandez-Garcia A et al (2009) Neonatal bilateral lidocaine administration into the ventral hippocampus caused postpubertal behavioral changes: an animal model of neurodevelopmental psychopathological disorders. Neuropsychiatr Dis Treat 5:15–22

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Becker .

Editor information

Editors and Affiliations

Appendices

Appendix 1

A comprehensive and highly detailed description of the essential materials and methods for producing the lesion, lesion verification, and a discussion of trouble areas and pitfalls has been given by Chambers and Lipska [151]. This chapter also includes some instructive illustrations. A study of this will enable the reader to perform perfect lesioning and, moreover, to adapt the method for the purpose of conducting further investigations in the field of schizophrenia research.

Appendix 2

Neonatal brain lesions have not been implicated in causing schizophrenia, and therefore this model lacks construct validity . In other experiments, the effects of transient inactivation of the ventral hippocampus during a critical period of development using either tetrodotoxin [117] or lidocaine [128, 152] were studied. After puberty, the rats with neonatal ventral transient inactivation exhibited alterations in behavior which were not evident in rats with adult ventral hippocampus inactivation. Among these, behavioral pattern hyperlocomotion, increased activity in response to amphetamine , and disrupted latent inhibition were reported. Interestingly, social behavior was not altered in rats with neonatal tetrodotoxin inactivation [117] but certainly was altered in rats whose ventral hippocampus was transiently inactivated with lidocaine [152]. It is not understood how such a transient and restricted blockade of ventral hippocampal activity in neonatal life can permanently alter brain function. It was concluded that transient ventral hippocampus inactivation might represent a potential new model of aspects of schizophrenia without a gross anatomical lesion [117].

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Becker, A. (2017). Modeling Schizophrenia: Focus on Developmental Models. In: Philippu, A. (eds) In Vivo Neuropharmacology and Neurophysiology. Neuromethods, vol 121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6490-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6490-1_16

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6488-8

  • Online ISBN: 978-1-4939-6490-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics