Skip to main content

Neurophysiological Approaches for In Vivo Neuropharmacology

  • Protocol
  • First Online:
In Vivo Neuropharmacology and Neurophysiology

Part of the book series: Neuromethods ((NM,volume 121))

  • 1134 Accesses

Abstract

Studies focused on the examination of the electrophysiological properties of single neurons or neural networks are most commonly performed in reduced preparations such as brain slices, disassociated neurons, or neuronal cultures. In addition, in vitro preparations are most commonly used to study the effects of neuromodulators such as monoamines, peptides, and others on the passive membrane properties, synaptic integration, and neuronal output of cells of interest. While these studies in reduced preparations are powerful for investigating mechanistic questions in identified neurons focused on drug-induced changes in ion conductances or intracellular signaling pathways, the loss of synaptic connectivity associated with these preparations limits their usefulness for solving systems neuroscience level questions or asking how pharmacodynamic drug effects act on the neuronal level when administered to intact animals. Indeed, in vivo studies have revealed that the spontaneous activity and integrative properties of neurons, and their responsiveness to neuromodulators, are largely determined by interactions between intrinsic membrane excitability and synaptic drive generated by the intact neuronal network. Given the importance of comparing outcomes from reduced preparations to those generated in the intact animal, this chapter details neurophysiological approaches for studying neuropharmacological manipulations in vivo. We focus on techniques that are used to generate information on the pharmacodynamic effects of psychotherapeutic drugs, delivered systemically as well as locally, on recordings of neuronal activity performed at the level of the single cell (e.g., single unit, juxtacellular, and intracellular recordings) and at the network level (local field potential, multi-array, amperometric, and voltammetric recordings). We also describe in detail various approaches which can be combined with the above recording techniques for local drug delivery (e.g., reverse dialysis, iontophoresis, pressure injection, microinjection, and intracellular application).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mallet N, Le Moine C, Charpier S, Gonon F (2005) Feedforward inhibition of projection neurons by fast-spiking GABA interneurons in the rat striatum in vivo. J Neurosci 25:3857–3869. doi:10.1523/jneurosci.5027-04.2005

    Article  CAS  PubMed  Google Scholar 

  2. Sharott A, Doig NM, Mallet N, Magill PJ (2012) Relationships between the firing of identified striatal interneurons and spontaneous and driven cortical activities in vivo. J Neurosci 32:13221–13236. doi:10.1523/jneurosci.2440-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tseng KY, Caballero A, Dec A, Cass DK, Simak N, Sunu E, Park MJ, Blume SR, Sammut S, Park DJ, West AR (2011) Inhibition of striatal soluble guanylyl cyclase-cGMP signaling reverses basal ganglia dysfunction and akinesia in experimental parkinsonism. PLoS One 6:e27187. doi:10.1371/journal.pone.0027187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Silva A, Cardoso-Cruz H, Silva F, Galhardo V, Antunes L (2010) Comparison of anesthetic depth indexes based on thalamocortical local field potentials in rats. Anesthesiology 112:355–363. doi:10.1097/ALN.0b013e3181ca3196

    Article  PubMed  Google Scholar 

  5. Dec AM, Kohlhaas KL, Nelson CL, Hoque KE, Leilabadi SN, Folk J, Wolf ME, West AR (2014) Impact of neonatal NOS-1 inhibitor exposure on neurobehavioural measures and prefrontal-temporolimbic integration in the rat nucleus accumbens. Int J Neuropsychopharmacol 17:275–287. doi:10.1017/s1461145713000990

    Article  CAS  PubMed  Google Scholar 

  6. Floresco SB, Blaha CD, Yang CR, Phillips AG (2001) Dopamine D1 and NMDA receptors mediate potentiation of basolateral amygdala-evoked firing of nucleus accumbens neurons. J Neurosci 21:6370–6376

    CAS  PubMed  Google Scholar 

  7. Kravitz AV, Freeze BS, Parker PR, Kay K, Thwin MT, Deisseroth K, Kreitzer AC (2010) Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry. Nature 466:622–626. doi:10.1038/nature09159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Padovan-Neto FE, Sammut S, Chakroborty S, Dec AM, Threlfell S, Campbell PW, Mudrakola V, Harms JF, Schmidt CJ, West AR (2015) Facilitation of corticostriatal transmission following pharmacological inhibition of striatal phosphodiesterase 10A: role of nitric oxide-soluble guanylyl cyclase-cGMP signaling pathways. J Neurosci 35:5781–5791. doi:10.1523/jneurosci.1238-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sammut S, Threlfell S, West AR (2010) Nitric oxide-soluble guanylyl cyclase signaling regulates corticostriatal transmission and short-term synaptic plasticity of striatal projection neurons recorded in vivo. Neuropharmacology 58:624–631. doi:10.1016/j.neuropharm.2009.11.011

    Article  CAS  PubMed  Google Scholar 

  10. Threlfell S, Sammut S, Menniti FS, Schmidt CJ, West AR (2009) Inhibition of phosphodiesterase 10A increases the responsiveness of striatal projection neurons to cortical stimulation. J Pharmacol Exp Ther 328:785–795. doi:10.1124/jpet.108.146332

    Article  CAS  PubMed  Google Scholar 

  11. Inokawa H, Yamada H, Matsumoto N, Muranishi M, Kimura M (2010) Juxtacellular labeling of tonically active neurons and phasically active neurons in the rat striatum. Neuroscience 168:395–404. doi:10.1016/j.neuroscience.2010.03.062

    Article  CAS  PubMed  Google Scholar 

  12. Mallet N, Ballion B, Le Moine C, Gonon F (2006) Cortical inputs and GABA interneurons imbalance projection neurons in the striatum of parkinsonian rats. J Neurosci 26:3875–3884. doi:10.1523/jneurosci.4439-05.2006

    Article  CAS  PubMed  Google Scholar 

  13. Brown KT, Flaming DG (1995) Advanced micropipette techniques for cell physiology. Wiley, New York, NY

    Google Scholar 

  14. Rosenkranz JA (2011) Neuronal activity causes rapid changes of lateral amygdala neuronal membrane properties and reduction of synaptic integration and synaptic plasticity in vivo. J Neurosci 31:6108–6120. doi:10.1523/jneurosci.0690-11.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. West AR, Grace AA (2002) Opposite influences of endogenous dopamine D1 and D2 receptor activation on activity states and electrophysiological properties of striatal neurons: studies combining in vivo intracellular recordings and reverse microdialysis. J Neurosci 22:294–304

    CAS  PubMed  Google Scholar 

  16. West AR, Grace AA (2004) The nitric oxide-guanylyl cyclase signaling pathway modulates membrane activity States and electrophysiological properties of striatal medium spiny neurons recorded in vivo. J Neurosci 24:1924–1935. doi:10.1523/jneurosci.4470-03.2004

    Article  CAS  PubMed  Google Scholar 

  17. West AR, Moore H, Grace AA (2002) Direct examination of local regulation of membrane activity in striatal and prefrontal cortical neurons in vivo using simultaneous intracellular recording and microdialysis. J Pharmacol Exp Ther 301:867–877

    Article  CAS  PubMed  Google Scholar 

  18. Chefer VI, Thompson AC, Zapata A, Shippenberg TS (2009) Overview of brain microdialysis. Current protocols in neuroscience. JN Crawley et al (eds) Chapter 7: Unit7 1. doi:10.1002/0471142301.ns0701s47

  19. Robinson DL, Venton BJ, Heien ML, Wightman RM (2003) Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem 49:1763–1773

    Article  CAS  PubMed  Google Scholar 

  20. Sammut S, Bray KE, West AR (2007) Dopamine D2 receptor-dependent modulation of striatal NO synthase activity. Psychopharmacology (Berl) 191:793–803. doi:10.1007/s00213-006-0681-z

    Article  CAS  Google Scholar 

  21. Sammut S, Dec A, Mitchell D, Linardakis J, Ortiguela M, West AR (2006) Phasic dopaminergic transmission increases NO efflux in the rat dorsal striatum via a neuronal NOS and a dopamine D(1/5) receptor-dependent mechanism. Neuropsychopharmacology 31:493–505. doi:10.1038/sj.npp.1300826

    Article  CAS  PubMed  Google Scholar 

  22. Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ (2012) Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 75:58–64. doi:10.1016/j.neuron.2012.04.038

    Article  CAS  PubMed  Google Scholar 

  23. Atcherley CW, Laude ND, Monroe EB, Wood KM, Hashemi P, Heien ML (2015) Improved calibration of voltammetric sensors for studying pharmacological effects on dopamine transporter kinetics in vivo. ACS Chem Neurosci 6:1509–1516. doi:10.1021/cn500020s

    Article  CAS  PubMed  Google Scholar 

  24. Burrell MH, Atcherley CW, Heien ML, Lipski J (2015) A novel electrochemical approach for prolonged measurement of absolute levels of extracellular dopamine in brain slices. ACS Chem Neurosci 6:1802–1812. doi:10.1021/acschemneuro.5b00120

    Article  CAS  PubMed  Google Scholar 

  25. Sinkala E, McCutcheon JE, Schuck MJ, Schmidt E, Roitman MF, Eddington DT (2012) Electrode calibration with a microfluidic flow cell for fast-scan cyclic voltammetry. Lab Chip 12:2403–2408. doi:10.1039/c2lc40168a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hasegawa T, Fujimoto H, Tashiro K, Nonomura M, Tsuchiya A, Watanabe D (2015) A wireless neural recording system with a precision motorized microdrive for freely behaving animals. Sci Rep 5:7853. doi:10.1038/srep07853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Royer S, Zemelman BV, Barbic M, Losonczy A, Buzsaki G, Magee JC (2010) Multi-array silicon probes with integrated optical fibers: light-assisted perturbation and recording of local neural circuits in the behaving animal. Eur J Neurosci 31:2279–2291. doi:10.1111/j.1460-9568.2010.07250.x

    Article  PubMed  PubMed Central  Google Scholar 

  28. Stark E, Koos T, Buzsaki G (2012) Diode probes for spatiotemporal optical control of multiple neurons in freely moving animals. J Neurophysiol 108:349–363. doi:10.1152/jn.00153.2012

    Article  PubMed  PubMed Central  Google Scholar 

  29. Schwarz DA, Lebedev MA, Hanson TL, Dimitrov DF, Lehew G, Meloy J, Rajangam S, Subramanian V, Ifft PJ, Li Z, Ramakrishnan A, Tate A, Zhuang KZ, Nicolelis MA (2014) Chronic, wireless recordings of large-scale brain activity in freely moving rhesus monkeys. Nat Methods 11:670–676. doi:10.1038/nmeth.2936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Applegate CD, Frysinger RC, Kapp BS, Gallagher M (1982) Multiple unit activity recorded from amygdala central nucleus during Pavlovian heart rate conditioning in rabbit. Brain Res 238:457–462

    Article  CAS  PubMed  Google Scholar 

  31. Salzman CD, Newsome WT (1994) Neural mechanisms for forming a perceptual decision. Science 264:231–237

    Google Scholar 

  32. Schoenbaum G, Chiba AA, Gallagher M (1999) Neural encoding in orbitofrontal cortex and basolateral amygdala during olfactory discrimination learning. J Neurosci 19:1876–1884

    CAS  PubMed  Google Scholar 

  33. Hollup SA, Molden S, Donnett JG, Moser MB, Moser EI (2001) Accumulation of hippocampal place fields at the goal location in an annular watermaze task. J Neurosci 21:1635–1644

    CAS  PubMed  Google Scholar 

  34. Szuts TA, Fadeyev V, Kachiguine S, Sher A, Grivich MV, Agrochao M, Hottowy P, Dabrowski W, Lubenov EV, Siapas AG, Uchida N, Litke AM, Meister M (2011) A wireless multi-channel neural amplifier for freely moving animals. Nat Neurosci 14:263–269. doi:10.1038/nn.2730

    Article  CAS  PubMed  Google Scholar 

  35. Schneider JS, Levine MS, Hull CD, Buchwald NA (1984) Effects of amphetamine on intracellular responses of caudate neurons in the cat. J Neurosci 4:930–938

    CAS  PubMed  Google Scholar 

  36. Rademacher DJ, Rosenkranz JA, Morshedi MM, Sullivan EM, Meredith GE (2010) Amphetamine-associated contextual learning is accompanied by structural and functional plasticity in the basolateral amygdala. J Neurosci 30:4676–4686. doi:10.1523/jneurosci.6165-09.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Park DJ, West AR (2009) Regulation of striatal nitric oxide synthesis by local dopamine and glutamate interactions. J Neurochem 111:1457–1465. doi:10.1111/j.1471-4159.2009.06416.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. West AR, Grace AA (2000) Striatal nitric oxide signaling regulates the neuronal activity of midbrain dopamine neurons in vivo. J Neurophysiol 83:1796–1808

    CAS  PubMed  Google Scholar 

  39. Woody C, Gruen E (1986) Responses of morphologically identified cortical neurons to intracellularly injected cyclic AMP. Exp Neurol 91:596–612

    Article  CAS  PubMed  Google Scholar 

  40. Woody C, Gruen E, Sakai H, Sakai M, Swartz B (1986) Responses of morphologically identified cortical neurons to intracellularly injected cyclic GMP. Exp Neurol 91:580–595

    Article  CAS  PubMed  Google Scholar 

  41. Woody CD, Bartfai T, Gruen E, Nairn AC (1986) Intracellular injection of cGMP-dependent protein kinase results in increased input resistance in neurons of the mammalian motor cortex. Brain Res 386:379–385

    Article  CAS  PubMed  Google Scholar 

  42. Nissen R, Hu B, Renaud LP (1995) Regulation of spontaneous phasic firing of rat supraoptic vasopressin neurones in vivo by glutamate receptors. J Physiol 484:415–424

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Paladini CA, Celada P, Tepper JM (1999) Striatal, pallidal, and pars reticulata evoked inhibition of nigrostriatal dopaminergic neurons is mediated by GABA(A) receptors in vivo. Neuroscience 89:799–812

    Article  CAS  PubMed  Google Scholar 

  44. Tepper JM, Martin LP, Anderson DR (1995) GABAA receptor-mediated inhibition of rat substantia nigra dopaminergic neurons by pars reticulata projection neurons. J Neurosci 15:3092–3103

    CAS  PubMed  Google Scholar 

  45. Cheron G, Sausbier M, Sausbier U, Neuhuber W, Ruth P, Dan B, Servais L (2009) BK channels control cerebellar Purkinje and Golgi cell rhythmicity in vivo. PLoS One 4:e7991. doi:10.1371/journal.pone.0007991

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Zhang W, Rosenkranz JA (2016) Effects of repeated stress on age-dependent GABAergic regulation of the lateral nucleus of the amygdala. Neuropsychopharmacology. doi:10.1038/npp.2016.33

  47. Aston-Jones G, Hirata H, Akaoka H (1997) Local opiate withdrawal in locus coeruleus in vivo. Brain Res 765:331–336

    Article  CAS  PubMed  Google Scholar 

  48. Budai D, Larson AA (1996) Role of substance P in the modulation of C-fiber-evoked responses of spinal dorsal horn neurons. Brain Res 710:197–203

    Article  CAS  PubMed  Google Scholar 

  49. Cumberbatch MJ, Chizh BA, Headley PM (1995) Modulation of excitatory amino acid responses by tachykinins and selective tachykinin receptor agonists in the rat spinal cord. Br J Pharmacol 115:1005–1012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. De Koninck Y, Henry JL (1989) Bombesin, neuromedin B and neuromedin C selectively depress superficial dorsal horn neurones in the cat spinal cord. Brain Res 498:105–117

    Article  PubMed  Google Scholar 

  51. Duggan AW, Hall JG, Headley PM (1977) Enkephalins and dorsal horn neurones of the cat: effects on responses to noxious and innocuous skin stimuli. Br J Pharmacol 61:399–408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Eberly LB, Dudley CA, Moss RL (1983) Iontophoretic mapping of corticotropin-releasing factor (CRF) sensitive neurons in the rat forebrain. Peptides 4:837–841

    Article  CAS  PubMed  Google Scholar 

  53. Krnjevic K, Schwartz S (1967) The action of gamma-aminobutyric acid on cortical neurones. Exp Brain Res 3:320–336

    Article  CAS  PubMed  Google Scholar 

  54. Werman R, Davidoff RA, Aprison MH (1967) Inhibition of motoneurones by iontophoresis of glycine. Nature 214:681–683

    Article  CAS  PubMed  Google Scholar 

  55. Disney AA, Aoki C, Hawken MJ (2007) Gain modulation by nicotine in macaque v1. Neuron 56(4):701–713. doi:10.1016/j.neuron.2007.09.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gronier B, Rasmussen K (1998) Activation of midbrain presumed dopaminergic neurones by muscarinic cholinergic receptors: an in vivo electrophysiological study in the rat. Br J Pharmacol 124:455–464. doi:10.1038/sj.bjp.0701850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu XT, Brooderson RJ, White FJ (1992) Repeated stimulation of D1 dopamine receptors causes time-dependent alterations in the sensitivity of both D1 and D2 dopamine receptors within the rat striatum. Neuroscience 50:137–147

    Article  CAS  PubMed  Google Scholar 

  58. Pierce RC, Rebec GV (1995) Iontophoresis in the neostriatum of awake, unrestrained rats: differential effects of dopamine, glutamate and ascorbate on motor- and nonmotor-related neurons. Neuroscience 67:313–324

    Article  CAS  PubMed  Google Scholar 

  59. Rovira C, Ben-Ari Y, Cherubini E (1984) Somatic and dendritic actions of gamma-aminobutyric acid agonists and uptake blockers in the hippocampus in vivo. Neuroscience 12:543–555

    Article  CAS  PubMed  Google Scholar 

  60. Siggins GR, Henriksen SJ (1975) Analogs of cyclic adenosine monophosphate: correlation of inhibition of Purkinje Neurons with Protein Kinase Activation. Science 189:559–561

    Article  CAS  PubMed  Google Scholar 

  61. Stone TW (1976) Responses of neurones in the cerebral cortex and caudate nucleus to amantadine, amphetamine and dopamine. Br J Pharmacol 56:101–110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Stone TW, Taylor DA (1977) Microiontophoretic studies of the effects of cyclic nucleotides on excitability of neurones in the rat cerebral cortex. J Physiol 266:523–543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stutzmann GE, McEwen BS, LeDoux JE (1998) Serotonin modulation of sensory inputs to the lateral amygdala: dependency on corticosterone. J Neurosci 18:9529–9538

    CAS  PubMed  Google Scholar 

  64. Waszcak BL, Walters JR (1983) Dopamine modulation of the effects of gamma-aminobutyric acid on substantia nigra pars reticulata neurons. Science 220:218–221

    Article  CAS  PubMed  Google Scholar 

  65. White FJ, Wang RY (1986) Electrophysiological evidence for the existence of both D-1 and D-2 dopamine receptors in the rat nucleus accumbens. J Neurosci 6:274–280

    CAS  PubMed  Google Scholar 

  66. Yim CY, Mogenson GJ (1982) Response of nucleus accumbens neurons to amygdala stimulation and its modification by dopamine. Brain Res 239:401–415

    Article  CAS  PubMed  Google Scholar 

  67. Aghajanian GK (1978) Tolerance of locus coeruleus neurones to morphine and suppression of withdrawal response by clonidine. Nature 276:186–188

    Article  CAS  PubMed  Google Scholar 

  68. Blier P, de Montigny C (1980) Effect of chronic tricyclic antidepressant treatment on the serotoninergic autoreceptor: a microiontophoretic study in the rat. Naunyn Schmiedebergs Arch Pharmacol 314:123–128

    Article  CAS  PubMed  Google Scholar 

  69. Einhorn LC, Johansen PA, White FJ (1988) Electrophysiological effects of cocaine in the mesoaccumbens dopamine system: studies in the ventral tegmental area. J Neurosci 8:100–112

    CAS  PubMed  Google Scholar 

  70. Faingold CL, Hoffmann WE, Caspary DM (1984) Effects of iontophoretic application of convulsants on the sensory responses of neurons in the brain-stem reticular formation. Electroencephalogr Clin Neurophysiol 58:55–64

    Article  CAS  PubMed  Google Scholar 

  71. Gallager DW (1978) Benzodiazepines: potentiation of a GABA inhibitory response in the dorsal raphe nucleus. Eur J Pharmacol 49:133–143

    Article  CAS  PubMed  Google Scholar 

  72. Gallager DW, Lakoski JM, Gonsalves SF, Rauch SL (1984) Chronic benzodiazepine treatment decreases postsynaptic GABA sensitivity. Nature 308:74–77

    Article  CAS  PubMed  Google Scholar 

  73. Gobbi G, Janiri L (1999) Clozapine blocks dopamine, 5-HT2 and 5-HT3 responses in the medial prefrontal cortex: an in vivo microiontophoretic study. Eur Neuropsychopharmacol 10:43–49

    Article  CAS  PubMed  Google Scholar 

  74. White FJ, Hu XT, Henry DJ (1993) Electrophysiological effects of cocaine in the rat nucleus accumbens: microiontophoretic studies. J Pharmacol Exp Ther 266:1075–1084

    CAS  PubMed  Google Scholar 

  75. Faingold CL, Gehlbach G, Caspary DM (1986) Decreased effectiveness of GABA-mediated inhibition in the inferior colliculus of the genetically epilepsy-prone rat. Exp Neurol 93:145–159

    Article  CAS  PubMed  Google Scholar 

  76. Hu XT, Wachtel SR, Galloway MP, White FJ (1990) Lesions of the nigrostriatal dopamine projection increase the inhibitory effects of D1 and D2 dopamine agonists on caudate-putamen neurons and relieve D2 receptors from the necessity of D1 receptor stimulation. J Neurosci 10:2318–2329

    CAS  PubMed  Google Scholar 

  77. Kamphuis W, Gorter JA, da Silva FL (1991) A long-lasting decrease in the inhibitory effect of GABA on glutamate responses of hippocampal pyramidal neurons induced by kindling epileptogenesis. Neuroscience 41:425–431

    Article  CAS  PubMed  Google Scholar 

  78. Ni Z, Gao D, Bouali-Benazzouz R, Benabid AL, Benazzouz A (2001) Effect of microiontophoretic application of dopamine on subthalamic nucleus neuronal activity in normal rats and in rats with unilateral lesion of the nigrostriatal pathway. Eur J Neurosci 14:373–381

    Article  CAS  PubMed  Google Scholar 

  79. Kiyatkin EA, Rebec GV (1999) Striatal neuronal activity and responsiveness to dopamine and glutamate after selective blockade of D1 and D2 dopamine receptors in freely moving rats. J Neurosci 19:3594–3609

    CAS  PubMed  Google Scholar 

  80. Kiyatkin EA, Rebec GV (2000) Dopamine-independent action of cocaine on striatal and accumbal neurons. Eur J Neurosci 12:1789–1800

    Article  CAS  PubMed  Google Scholar 

  81. Rogawski MA, Aghajanian GK (1980) Modulation of lateral geniculate neurone excitability by noradrenaline microiontophoresis or locus coeruleus stimulation. Nature 287:731–734

    Article  CAS  PubMed  Google Scholar 

  82. Bernardi G, Cherubini E, Marciani MG, Mercuri N, Stanzione P (1982) Responses of intracellularly recorded cortical neurons to the iontophoretic application of dopamine. Brain Res 245:267–274

    Article  CAS  PubMed  Google Scholar 

  83. Calabresi P, Mercuri NB, Stefani A, Bernardi G (1990) Synaptic and intrinsic control of membrane excitability of neostriatal neurons. I. An in vivo analysis. J Neurophysiol 63:651–662

    CAS  PubMed  Google Scholar 

  84. Ego-Stengel V, Bringuier V, Shulz DE (2002) Noradrenergic modulation of functional selectivity in the cat visual cortex: an in vivo extracellular and intracellular study. Neuroscience 111:275–289

    Article  CAS  PubMed  Google Scholar 

  85. Herrling PL (1981) The membrane potential of cat hippocampal neurons recorded in vivo displays four different reaction-mechanisms to iontophoretically applied transmitter agonists. Brain Res 212:331–343

    Article  CAS  PubMed  Google Scholar 

  86. Lalley PM, Bischoff AM, Richter DW (1994) 5-HT-1A receptor-mediated modulation of medullary expiratory neurones in the cat. J Physiol 476:117–130

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Yim CY, Mogenson GJ (1988) Neuromodulatory action of dopamine in the nucleus accumbens: an in vivo intracellular study. Neuroscience 26:403–415

    Article  CAS  PubMed  Google Scholar 

  88. Li BM, Mao ZM, Wang M, Mei ZT (1999) Alpha-2 adrenergic modulation of prefrontal cortical neuronal activity related to spatial working memory in monkeys. Neuropsychopharmacology 21:601–610. doi:10.1016/s0893-133x(99)00070-6

    Article  CAS  PubMed  Google Scholar 

  89. Jackson ME, Homayoun H, Moghaddam B (2004) NMDA receptor hypofunction produces concomitant firing rate potentiation and burst activity reduction in the prefrontal cortex. Proc Natl Acad Sci U S A 101:8467–8472. doi:10.1073/pnas.0308455101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mueller D, Bravo-Rivera C, Quirk GJ (2010) Infralimbic D2 receptors are necessary for fear extinction and extinction-related tone responses. Biol Psychiatry 68:1055–1060. doi:10.1016/j.biopsych.2010.08.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hampson RE, Deadwyler SA (2000) Cannabinoids reveal the necessity of hippocampal neural encoding for short-term memory in rats. J Neurosci 20:8932–8942

    CAS  PubMed  Google Scholar 

  92. Kiyatkin EA, Rebec GV (1996) Dopaminergic modulation of glutamate-induced excitations of neurons in the neostriatum and nucleus accumbens of awake, unrestrained rats. J Neurophysiol 75:142–153

    CAS  PubMed  Google Scholar 

  93. Kiyatkin EA, Rebec GV (1997) Iontophoresis of amphetamine in the neostriatum and nucleus accumbens of awake, unrestrained rats. Brain Res 771:14–24

    Article  CAS  PubMed  Google Scholar 

  94. Kiyatkin EA, Rebec GV (1998) Heterogeneity of ventral tegmental area neurons: single-unit recording and iontophoresis in awake, unrestrained rats. Neuroscience 85:1285–1309

    Article  CAS  PubMed  Google Scholar 

  95. Rolls ET, Thorpe SJ, Boytim M, Szabo I, Perrett DI (1984) Responses of striatal neurons in the behaving monkey. 3. Effects of iontophoretically applied dopamine on normal responsiveness. Neuroscience 12:1201–1212

    Article  CAS  PubMed  Google Scholar 

  96. Birnbaum SG, Yuan PX, Wang M, Vijayraghavan S, Bloom AK, Davis DJ, Gobeske KT, Sweatt JD, Manji HK, Arnsten AF (2004) Protein kinase C overactivity impairs prefrontal cortical regulation of working memory. Science 306:882–884. doi:10.1126/science.1100021

    Article  CAS  PubMed  Google Scholar 

  97. Sawaguchi T (1998) Attenuation of delay-period activity of monkey prefrontal neurons by an alpha2-adrenergic antagonist during an oculomotor delayed-response task. J Neurophysiol 80:2200–2205

    CAS  PubMed  Google Scholar 

  98. Sawaguchi T, Matsumura M, Kubota K (1990) Catecholaminergic effects on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 63:1385–1400

    CAS  PubMed  Google Scholar 

  99. Sawaguchi T, Matsumura M, Kubota K (1990) Effects of dopamine antagonists on neuronal activity related to a delayed response task in monkey prefrontal cortex. J Neurophysiol 63:1401–1412

    CAS  PubMed  Google Scholar 

  100. Williams GV, Rao SG, Goldman-Rakic PS (2002) The physiological role of 5-HT2A receptors in working memory. J Neurosci 22:2843–2854, 20026203

    CAS  PubMed  Google Scholar 

  101. Zheng W, Knudsen EI (1999) Functional selection of adaptive auditory space map by GABAA-mediated inhibition. Science 284:962–965

    Article  CAS  PubMed  Google Scholar 

  102. Lewis RJ (2012) Sax’s dangerous properties of industrial materials, 12th edn. Wiley, New York, NY

    Google Scholar 

  103. Millar J, Pelling CW (2001) Improved methods for construction of carbon fibre electrodes for extracellular spike recording. J Neurosci Methods 110:1–8

    Article  CAS  PubMed  Google Scholar 

  104. Ponchon JL, Cespuglio R, Gonon F, Jouvet M, Pujol JF (1979) Normal pulse polarography with carbon fiber electrodes for in vitro and in vivo determination of catecholamines. Anal Chem 51:1483–1486

    Article  CAS  PubMed  Google Scholar 

  105. Zhang X, Cardosa L, Broderick M, Fein H, Davies IR (2000) Novel calibration method for nitric oxide microsensors by stoichiometrical generation of nitric oxide from SNAP. Electroanalysis 12:425–428

    Article  CAS  Google Scholar 

  106. Paxinos G, Watson C (2006) The rat brain in stereotaxic coordinates, 6th edn. Elsevier, Amsterdam

    Google Scholar 

  107. Maina FK, Khalid M, Apawu AK, Mathews TA (2012) Presynaptic dopamine dynamics in striatal brain slices with fast-scan cyclic voltammetry. J Vis Exp (59). doi:10.3791/3464

  108. Wickham RJ, Park J, Nunes EJ, Addy NA (2015) Examination of rapid dopamine dynamics with fast scan cyclic voltammetry during intra-oral tastant administration in awake rats. J Vis Exp (102):e52468. doi:10.3791/52468

  109. Atcherley CW, Vreeland RF, Monroe EB, Sanchez-Gomez E, Heien ML (2013) Rethinking data collection and signal processing. 2. Preserving the temporal fidelity of electrochemical measurements. Anal Chem 85:7654–7658. doi:10.1021/ac402037k

    Article  CAS  PubMed  Google Scholar 

  110. Zhang X (2004) Real time and in vivo monitoring of nitric oxide by electrochemical sensors--from dream to reality. Front Biosci 9:3434–3446

    Article  CAS  PubMed  Google Scholar 

  111. Ondracek JM, Dec A, Hoque KE, Lim SA, Rasouli G, Indorkar RP, Linardakis J, Klika B, Mukherji SJ, Burnazi M, Threlfell S, Sammut S, West AR (2008) Feed-forward excitation of striatal neuron activity by frontal cortical activation of nitric oxide signaling in vivo. Eur J Neurosci 27:1739–1754. doi:10.1111/j.1460-9568.2008.06157.x

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anthony R. West Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Sammut, S., Chakroborty, S., Padovan-Neto, F.E., Rosenkranz, J.A., West, A.R. (2017). Neurophysiological Approaches for In Vivo Neuropharmacology. In: Philippu, A. (eds) In Vivo Neuropharmacology and Neurophysiology. Neuromethods, vol 121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6490-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6490-1_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6488-8

  • Online ISBN: 978-1-4939-6490-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics