Skip to main content

Involvement of Neurotransmitters in Mnemonic Processes, Response to Noxious Stimuli and Conditioned Fear: A Push–Pull Superfusion Study

  • Protocol
  • First Online:
In Vivo Neuropharmacology and Neurophysiology

Part of the book series: Neuromethods ((NM,volume 121))

  • 1052 Accesses

Abstract

The push–pull superfusion technique is a useful tool to investigate neurotransmitter release during different behavioral tasks such as tests on acquisition of information, mnemonic processes, response to noxious stimuli and to conditioned fear. We know that during these processes different neurotransmitters in specific brain regions are released, responding to the stimulus. The scope of this chapter is to describe changes in neuronal activity elicited by mnemonic and various behavioral tasks. For this purpose, we investigated the release of endogenous acetylcholine and glutamate in the nucleus accumbens during acquisition of information and short-term memory. Furthermore, release of serotonin in the locus coeruleus and acetylcholine in the nucleus accumbens were studied during stress procedures such as noise, immobilization, and non-traumatic tail-pinch. Lastly, release of serotonin and amino acids were determined in the locus coeruleus during conditioned fear and inescapable shock. It is concluded, that within the nucleus accumbens, histaminergic neurons facilitate per se short-term memory without evoking cholinergic and glutamatergic transmission. Aversive stimuli evoke release of several neurotransmitters in different brain regions. In the locus coeruleus inescapable shock enhances release of serotonin. During conditioned fear a decrease in the release of serotonin is accompanied by tachycardia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Prast H, Argyriou A, Philippu A (1996) Histaminergic neurons facilitate social memory in rats. Brain Res 734:316–318

    Article  CAS  PubMed  Google Scholar 

  2. Philippu A, Prast H (2001) Role of histaminergic and cholinergic transmission in cognitive processes. Drugs News Perspect 14:523–529

    Article  CAS  Google Scholar 

  3. Philippu A, Prast H (2001) Importance of histamine in modulatory processes, locomotion and memory. Behav Brain Res 124:151–159

    Article  CAS  PubMed  Google Scholar 

  4. Philippu A, Prast H (1998) Importance of brain histamine in locomotion, memory and EEG spectral power. INABIS 1998

    Google Scholar 

  5. Philippu A, Prast H, Kraus MM (2001) Histaminergic and cholinergic transmission in cognitive processes. In: Histamine research in the new millennium. Elsevier Sciences B.V, Philadelphia, PA, pp 33–38

    Google Scholar 

  6. Prast H, Philippu A (2000) Improvement of memory by H3 receptor ligands? ÖGAI J 19(2):13–15

    Google Scholar 

  7. Kraus MM, Prast H, Philippu A (2013) Facilitation of short-term memory by histaminergic neurons in the nucleus accumbens is independent of cholinergic and glutamatergic transmission. Br J Pharmacol 170:214–221. doi:10.1111/bph.12271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Prast H, Fischer H-P, Prast M, Philippu A (1994) In vivo modulation of histamine release by autoreceptors and muscarinic acetylcholine receptors in the rat anterior hypothalamus. Naunyn Schmiedebergs Arch Pharmacol 350:599–604

    Article  CAS  PubMed  Google Scholar 

  9. Kraus MM, Prast H, Philippu A (2013) Influence of the hippocampus on amino acid utilizing and cholinergic neurons within the nucleus accumbens is promoted by histamine via H1 receptors. Br J Pharmacol 170:170–176. doi:10.1111/bph.12212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kaehler ST, Philippu A, Singewald N (1999) Effects of local MAO inhibition in the locus coeruleus on extracellular serotonin and 5-HIAA during exposure to sensory and cardiovascular stimuli. Naunyn Schmiedebergs Arch Pharmacol 359:187–193

    Article  CAS  PubMed  Google Scholar 

  11. Sinner C, Kaehler ST, Philippu A, Singewald N (2001) Role of nitric oxide in the stress-induced release of serotonin in the locus coeruleus. Naunyn Schmiedebergs Arch Pharmacol 364:105–109

    Article  CAS  PubMed  Google Scholar 

  12. Singewald N, Kaehler S, Hemeida R, Philippu A (1997) Release of serotonin in the rat locus coeruleus: effects of cardiovascular, stressful and noxious stimuli. Eur J Neurosci 9:556–562

    Article  CAS  PubMed  Google Scholar 

  13. Singewald N, Kouvelas D, Mostafa A, Sinner C, Philippu A (2000) Release of glutamate and GABA in the amygdala of conscious rats by acute stress and baroreceptor activation: differences between SHR and WKY rats. Brain Res 864:138–141

    Article  CAS  PubMed  Google Scholar 

  14. Singewald N, Schneider C, Philippu A (1994) Effects of neuroactive compounds, noxious and cardiovascular stimuli on the release of amino acids in the rat locus coeruleus. Neurosci Lett 180:55–58

    Article  CAS  PubMed  Google Scholar 

  15. Singewald N, Kaehler ST, Hemeida R, Philippu A (1998) Influence of excitatory amino acids on basal and sensory stimuli-induced release of 5-HT in the locus coeruleus. Br J Pharmacol 123:746–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Kaehler ST, Sinner C, Philippu A (2000) Release of catecholamines in the locus coeruleus of freely moving and anaesthetized normotensive and spontaneously hypertensive rats: effects of cardiovascular changes and tail pinch. Naunyn Schmiedebergs Arch Pharmacol 361:433–439

    Article  CAS  PubMed  Google Scholar 

  17. Kaehler ST, Singewald N, Sinner C, Thurnher C, Philippu A (2000) Conditioned fear and inescapable shock modify the release of serotonin in the locus coeruleus. Brain Res 859:249–254

    Article  CAS  PubMed  Google Scholar 

  18. Singewald N, Kaehler S, Sinner C, Thurnher C, Kouvelas D, Philippu A (2000) Serotonin and amino acid release in the locus coeruleus by conditioned fear and inescapable shock. INABIS 2000, 6th Internet World Congress for Biomedical Sciences, Presentation 27

    Google Scholar 

  19. Kaehler ST, Sinner C, Kouvelas D, Philippu A (2000) Effects of inescapable shock and conditioned fear on the release of excitatory and inhibitory amino acids in the locus coeruleus. Naunyn Schmiedebergs Arch Pharmacol 361:193–199

    Article  CAS  PubMed  Google Scholar 

  20. Paxinos G, Watson C (1998) The rat brain in the stereotaxic coordinates. Academic, Sydney, NSW

    Google Scholar 

  21. Damsma G, Westerink BH, de Vries JB, Van den Berg CJ, Horn AS (1987) Measurement of acetylcholine release in freely moving rats by means of automated intracerebral dialysis. J Neurochem 48:1523–1528

    Article  CAS  PubMed  Google Scholar 

  22. Prast H, Fischer H, Werner E, Werner-Felmayer G, Philippu A (1995) Nitric oxide modulates the release of acetylcholine in the ventral striatum of the freely moving rat. Naunyn Schmiedebergs Arch Pharmacol 352:67–73

    Article  CAS  PubMed  Google Scholar 

  23. Kraus MM (2001) Study of nitric oxide- and histamine-mediated in vivo release of neurotransmitters in the ventral striatum; role of the ventral striatum in memory, behaviour and neurotoxicity of amphetamine. Dissertation, Leopold-Franzens-University of Innsbruck

    Google Scholar 

  24. Hasselmo ME, Bower JM (1993) Acetylcholine and memory. Trends Neurosci 16:218–222

    Article  CAS  PubMed  Google Scholar 

  25. Nakazato E, Yamamoto T, Ohno M, Watanabe S (2000) Cholinergic and glutamatergic activation reverses working memory failure by hippocampal histamine H1 receptor blockade in rats. Life Sci 67:1139–1147

    Article  CAS  PubMed  Google Scholar 

  26. De Jaeger X, Cammarota M, Prado MA, Izquierdo I, Prado VF, Pereira GS (2013) Decreased acetylcholine release delays the consolidation of object recognition memory. Behav Brain Res 238:62–68

    Article  PubMed  Google Scholar 

  27. Muir JL, Everitt BJ, Robbins TW (1994) AMPA-induced excitotoxic lesions of the basal forebrain: a significant role for the cortical cholinergic system in attentional function. J Neurosci 14:2313–2326

    CAS  PubMed  Google Scholar 

  28. Torres EM, Perry TA, Blockland A, Wilkinson LS, Wiley RG, Lappi DA, Dunnett SB (1994) Behavioural, histochemical and biochemical consequences of selective immunolesions in discrete regions of the basal forebrain cholinergic system. Neuroscience 63:95–122

    Article  CAS  PubMed  Google Scholar 

  29. Sarter M, Paolone G (2011) Deficits in attentional control: cholinergic mechanisms and circuitry-based treatment approaches. Behav Neurosci 125:825–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Carr WJ, Yee L, Gable D, Marasco E (1976) Olfactory recognition of conspecifics by domestic Norway rats. J Comp Physiol Psychol 90:821–828

    Article  CAS  PubMed  Google Scholar 

  31. Thor DH, Holloway WR (1982) Social memory of the male laboratory rat. J Comp Physiol Psychol 96:1000–1006

    Article  Google Scholar 

  32. Schacter GB, Yang CR, Innis NK, Mogenson GJ (1989) The role of the hippocampal-nucleus accumbens pathway in radial-arm maze performance. Brain Res 494:339–349

    Article  CAS  PubMed  Google Scholar 

  33. Dantzer R, Bluthe RM, Koob GF, Le Moal M (1987) Modulation of social memory in male rats by neurohypophyseal peptides. Psychopharmacology (Berl) 91:363–368

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Development of PPC and PPST as well as findings presented in this review was supported by the Deutsche Forschungsgemeinschaft (DFG), Fonds zur Förderung der Wissenschaftlichen Forschung (FWF), Russia Foundation for Fundamental Research, and INTAS grant (No 96-1502) of European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela M. Kraus .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Kraus, M.M., Philippu, A. (2017). Involvement of Neurotransmitters in Mnemonic Processes, Response to Noxious Stimuli and Conditioned Fear: A Push–Pull Superfusion Study. In: Philippu, A. (eds) In Vivo Neuropharmacology and Neurophysiology. Neuromethods, vol 121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6490-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6490-1_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6488-8

  • Online ISBN: 978-1-4939-6490-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics