Skip to main content

Push–Pull Superfusion: A Technique for Investigating Involvement of Neurotransmitters in Brain Function

  • Protocol
  • First Online:
In Vivo Neuropharmacology and Neurophysiology

Part of the book series: Neuromethods ((NM,volume 121))

  • 1082 Accesses

Abstract

Elucidation of neuronal interactions and consequently knowledge about brain function is only possible under in vivo conditions. The push–pull superfusion technique (PPST) is a technique for investigating in vivo release of neurotransmitters in distinct brain areas. Identification of transmitters released under physiological and experimentally evoked conditions as well as under pathological conditions is a prerequisite for understanding the physiology of brain functions and, most important, for the development of specific drugs for treatment of brain disorders. Analysis of the dynamics of basal release rates provides information about the pattern of release and the possible existence of oscillatory, ultradian, or circadian rhythms. Moreover, modification of the PPST makes possible the simultaneous determination of transmitter release and electroencephalogram (EEG) recording, the recording of evoked potentials or the on-line determination of endogenous nitric oxide (NO) released into the synaptic cleft. Indispensable for these implementations are (a) a very good time resolution, (b) the direct collection of transmitters released in the synaptic cleft without interference of membranes, and (c) the possibility to insert electrodes exactly into the area that is superfused. For instance, investigation of central cardiovascular control, behavioral tasks or mnemonic processes requires very short collection periods, because changes in transmitter release occur within seconds. Therefore, a good resolution time is necessary. Even more important is the time resolution and the positioning of electrodes when rates of transmitter release are correlated with evoked extracellular potentials or EEG recordings. In this review the various implementations of the PPST and the achieved knowledge by using it are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Holtz P (1950) Über die sympathicomimetische Wirksamkeit von Gehirnextrakten. Acta Physiol Scand 20:354–362. doi:10.1111/j.1748-1716.1950.tb00712.x

    Article  CAS  PubMed  Google Scholar 

  2. Vogt M (1954) The concentration of sympathin in different parts of the central nervous system under normal conditions and after the administration of drugs. J Physiol 123:451–481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Carlsson A (1993) Thirty years of dopamine research. Adv Neurol 60:1–10

    CAS  PubMed  Google Scholar 

  4. Feldberg W, Vogt M (1948) Acetylcholine synthesis in different regions of the central nervous system. J Physiol 107:372–381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Falck B, Hillarp NA (1959) On the cellular localization of catechol amines in the brain. Acta Anat (Basel) 38:277–279. doi:10.1159/000141530

    Article  CAS  Google Scholar 

  6. Dahlström A, Fuxe K, Hillarp NA (1965) Site of action of reserpine. Acta Pharmacol Toxicol 22:277–292. doi:10.1111/j.1600-0773.1965.tb01823

    Article  Google Scholar 

  7. Philippu A (1988) Regulation of blood pressure by central neurotransmitters and neuropeptides. In: Blaustein MP et al (eds) Reviews of physiology, biochemistry and pharmacology, vol 111. Springer, Heidelberg, pp 1–115

    Google Scholar 

  8. Feldberg B (1963) Pharmacological approach to the brain. Williams & Wilkins, Baltimore, MD

    Google Scholar 

  9. Philippu A (1984) Use of push-pull cannulae to determine the release of endogenous neurotransmitters in distinct brain areas of anaesthetized and freely moving animals. In: Marsden CA (ed) Measurement of neurotransmitter release. Wiley, New York, NY

    Google Scholar 

  10. Chefer VI, Thompson AC, Zapata A, Shippenberg TS (2009) Overview of brain microdialysis. Curr Protoc Neurosci Chapter 7 Unit 7.1. doi: 10.1002/0471142301.ns0701s47

  11. Kissinger PT, Hart JB, Adams RN (1973) Voltametry in brain tissue--a new neurophysiological measurement. Brain Res 55:209–213. doi:10.1016/0006-8993(73)90503-9

    Article  CAS  PubMed  Google Scholar 

  12. Gaddum JH (1961) Push-pull cannulae. J Physiol 155(Suppl):1P–2P

    Article  Google Scholar 

  13. Szerb JC (1967) Model experiments with Gaddum’s push-pull cannulas. Can J Physiol Pharmacol 45:613–620

    Article  CAS  PubMed  Google Scholar 

  14. Philippu A, Heyd G, Burger A (1970) Release of noradrenaline from the hypothalamus in vivo. Eur J Pharmacol 9:52–58

    Article  CAS  PubMed  Google Scholar 

  15. Przuntek H, Guimaraes S, Philippu A (1971) Importance of adrenergic neurons of the brain for the rise of blood pressure evoked by hypothalamic stimulation. Naunyn Schmiedebergs Arch Pharmacol 271:311–319

    Article  CAS  PubMed  Google Scholar 

  16. Philippu A, Glowinski J, Besson MJ (1974) In vivo release of newly synthesized catecholamines in the hypothalamus by amphetamine. Naunyn Schmiedebergs Arch Pharmacol 282:1–8

    Article  CAS  PubMed  Google Scholar 

  17. Singewald N, Kaehler ST, Hemeida R, Philippu A (1997) Release of serotonin in the rat locus coeruleus: effects of cardiovascular, stressful and noxious stimuli. Eur J Neurosci 9:556–562

    Article  CAS  PubMed  Google Scholar 

  18. Lanzinger I, Kobilansky C, Philippu A (1989) Pattern of catecholamine release in the nucleus tractus solitarii of the cat. Naunyn Schmiedebergs Arch Pharmacol 339:298–301

    Article  CAS  PubMed  Google Scholar 

  19. Axelrod J, Tomchick R (1958) Enzymatic O-methylation of epinephrine and other catechols. J Biol Chem 233(3):702–705

    CAS  PubMed  Google Scholar 

  20. Prast H, Fischer HP, Prast M, Philippu A (1994) In vivo modulation of histamine release by autoreceptors and muscarinic acetylcholine receptors in the rat anterior hypothalamus. Naunyn Schmiedebergs Arch Pharmacol 350:599–604

    Article  CAS  PubMed  Google Scholar 

  21. Prast H, Philippu A (1992) Nitric oxide releases acetylcholine in the basal forebrain. Eur J Pharmacol 216:139–140

    Article  CAS  PubMed  Google Scholar 

  22. Kraus MM (2001) Study of nitric oxide- and histamine-mediated in vivo release of neurotransmitters in the ventral striatum; role of the ventral striatum in memory, behaviour and neurotoxicity of amphetamine. Dissertation, Leopold-Franzens-University of Innsbruck.

    Google Scholar 

  23. Philippu A, Hanesch U, Hagen R, Robinson RL (1982) Release of endogenous histamine in the hypothalamus of anaesthetized cats and conscious, freely moving rabbits. Naunyn Schmiedebergs Arch Pharmacol 321:282–286

    Article  CAS  PubMed  Google Scholar 

  24. Tuomisto L, Yamatodani A, Dietl H, Waldmann U, Philippu A (1983) In vivo release of endogenous catecholamines, histamine and GABA in the hypothalamus of Wistar Kyoto and spontaneously hypertensive rats. Naunyn Schmiedebergs Arch Pharmacol 323:183–187

    Article  CAS  PubMed  Google Scholar 

  25. Snider RS, Niemer WT (1961) A stereotaxic atlas of the cat brain. The University of Chicago Press, Chicago, IL

    Google Scholar 

  26. Bures J, Petran M, Zachar J (1967) Electrophysiological methods in biological research. Academia publishing house of the Czechoslowak Academy of Sciences. Prague and Academic Press, New York, NY

    Google Scholar 

  27. Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates. Academic, Sydney, NSW

    Google Scholar 

  28. Prast H, Dietl H, Philippu A (1992) Pulsatile release of histamine in the hypothalamus of conscious rats. J Auton Nerv Syst 39:105–110

    Article  CAS  PubMed  Google Scholar 

  29. Prast H, Fischer H, Werner E, Werner-Felmayer G, Philippu A (1995) Nitric oxide modulates the release of acetylcholine in the ventral striatum of the freely moving rat. Naunyn Schmiedebergs Arch Pharmacol 352:67–73

    Article  CAS  PubMed  Google Scholar 

  30. Yamazaki S, Kerbeshian MC, Hocker CG, Block GD, Menaker M (1998) Rhythmic properties of the hamster suprachiasmatic nucleus in vivo. J Neurosci 18:10709–10723

    CAS  PubMed  Google Scholar 

  31. Philippu A, Dietl H, Sinha JN (1979) In vivo release of endogenous catecholamines in the hypothalamus. Naunyn Schmiedebergs Arch Pharmacol 308:137–142

    Article  CAS  PubMed  Google Scholar 

  32. Dietl H, Philippu A (1979) In vivo release of endogenous gamma-aminobutyric acid in the cat hypothalamus. Naunyn Schmiedebergs Arch Pharmacol 308:143–147

    Article  CAS  PubMed  Google Scholar 

  33. Singewald N, Schneider C, Pfitscher A, Philippu A (1994) In vivo release of catecholamines in the locus coeruleus. Naunyn Schmiedebergs Arch Pharmacol 350:339–345

    Article  CAS  PubMed  Google Scholar 

  34. Prast H, Saxer A, Philippu A (1988) Pattern of in vivo release of endogenous histamine in the mamillary body and the amygdala. Naunyn Schmiedebergs Arch Pharmacol 337:53–57

    Article  CAS  PubMed  Google Scholar 

  35. Prast H, Hornick A, Kraus MM, Philippu A (2015) Origin of endogenous nitric oxide released in the nucleus accumbens under real-time in vivo conditions. Life Sci 134:79–84. doi:10.1016/j.lfs.2015.04.021

    Article  CAS  PubMed  Google Scholar 

  36. Chung S, Lee EJ, Yun S, Choe HK, Park SB, Son HJ, Kim KS, Dluzen DE, Lee I, Hwang O, Son GH, Kim K (2014) Impact of circadian nuclear receptor REV-ERBα on midbrain dopamine production and mood regulation. Cell 157(858):868. doi:10.1016/j.cell.2014.03.039

    Google Scholar 

  37. Singewald N, Philippu A (1996) Involvement of biogenic amines and amino acids in the central regulation of cardiovascular homeostasis. Trends Pharmacol Sci 17:356–363

    Article  CAS  PubMed  Google Scholar 

  38. Philippu A (1980) Involvement of hypothalamic catecholamines in the regulation of the arterial blood pressure. Trends Pharmacol Sci 1:376–378

    Article  CAS  Google Scholar 

  39. Dampne RA (1994) Functional organization of central pathways regulating the cardiovascular system. Physiol Rev 74:323–364

    Google Scholar 

  40. Guyenet PG (2006) The sympathetic control of blood pressure. Nat Rev Neurosci 7:335–346

    Article  CAS  PubMed  Google Scholar 

  41. Sinha JN, Dietl H, Philippu A (1980) Effect of a fall of blood pressure on the release of catecholamines in the hypothalamus. Life Sci 26:1751–1760

    Article  CAS  PubMed  Google Scholar 

  42. Philippu A, Dietl H, Eisert A (1981) Hypotension alters the release of catecholamines in the hypothalamus of the conscious rabbit. Eur J Pharmacol 69:519–523

    Article  CAS  PubMed  Google Scholar 

  43. Philippu A, Dietl H, Sinha JN (1980) Rise in blood pressure increases the release of endogenous catecholamines in the anterior hypothalamus of the cat. Naunyn Schmiedebergs Arch Pharmacol 310:237–240

    Article  CAS  PubMed  Google Scholar 

  44. Dietl H, Eisert A, Kraus A, Philippu A (1981) The release of endogenous catecholamines in the cat hypothalamus is affected by spinal transection and drugs which change the arterial blood pressure. J Auton Pharmacol 1:279–286

    Article  CAS  PubMed  Google Scholar 

  45. Grass K, Prast H, Philippu A (1995) Ultradian rhythm in the delta and theta frequency bands of the EEG in the posterior hypothalamus of the rat. Neurosci Lett 19:161–164

    Article  Google Scholar 

  46. Prast H, Grass K, Philippu A (1997) The ultradian EEG rhythm coincides temporally with the ultradian rhythm of histamine release in the posterior hypothalamus. Naunyn Schmiedebergs Arch Pharmacol 356:526–528

    Article  CAS  PubMed  Google Scholar 

  47. Grass K, Prast H, Philippu A (1996) Influence of mediobasal hypothalamic lesion and catecholamine receptor antagonists on ultradian rhythm of EEG in the posterior hypothalamus of the rat. Neurosci Lett 207:93–96

    Article  CAS  PubMed  Google Scholar 

  48. Grass K, Prast H, Philippu A (1998) Influence of catecholamine receptor agonists and antagonists on the ultradian rhythm of the EEG in the posterior hypothalamus. Naunyn Schmiedebergs Arch Pharmacol 357:169–175

    Article  CAS  PubMed  Google Scholar 

  49. Prast H, Grass K, Philippu A (1996) Influence of histamine receptor agonists and antagonists on ultradian rhythm of EEG in the posterior hypothalamus of the rat. Neurosci Lett 216:21–24

    Article  CAS  PubMed  Google Scholar 

  50. Kraus MM, Prast H, Philippu A (2014) Influence of parafascicular thalamic input on neuronal activity within the nucleus accumbens is mediated by nitric oxide—an in vivo study. Life Sci 102:49–54. doi:10.1016/j.lfs.2014.02.029

    Article  CAS  PubMed  Google Scholar 

  51. Prast H, Lamberti C, Fischer H, Tran MH, Philippu A (1996) Nitric oxide influences the release of histamine and glutamate in the rat hypothalamus. Naunyn Schmiedebergs Arch Pharmacol 354:731–735

    Article  CAS  PubMed  Google Scholar 

  52. Prast H, Fischer H, Tran MH, Grass K, Lamberti C, Philippu A (1997) Modulation of acetylcholine release in the ventral striatum by histamine receptors. Inflamm Res 46:S37–S38

    Article  CAS  PubMed  Google Scholar 

  53. Argyriou A, Prast H, Philippu A (1997) Olfactory social memory in rats is facilitated by histamine. Inflamm Res 46:S39–S40

    Article  CAS  PubMed  Google Scholar 

  54. Philippu A (1991) Interactions of histamine with other neuron systems. In: Wada H, Watanabe T (eds) Histaminergic neurons. Morphology and function. CRC Press, Boca Raton, FL

    Google Scholar 

  55. Philippu A, Prast H (2001) Role of histaminergic and cholinergic transmission in cognitive processes. Drug News Perspect 14:523–529

    Article  CAS  PubMed  Google Scholar 

  56. Philippu A (1992) Modulation by heteroreceptors of histamine release in the brain. Ann Psychiatry 3:79–87

    CAS  Google Scholar 

  57. Philippu A, Tran MH, Prast H (1999) Histaminergic H2 receptor ligands modulate acetylcholine release in the ventral striatum. Inflamm Res 48(Suppl 1):57–S58

    Article  Google Scholar 

  58. Prast H, Tran MH, Fischer H, Kraus M, Lamberti C, Grass K, Philippu A (1999) Histaminergic neurons modulate acetylcholine release in the ventral striatum: role of H3 histamine receptors. Naunyn Schmiedebergs Arch Pharmacol 360:558–564

    Article  CAS  PubMed  Google Scholar 

  59. Kaehler ST, Singewald N, Sinner C, Philippu A (1999) Nitric oxide modulates the release of serotonin in the rat hypothalamus. Brain Res 835:346–349

    Article  CAS  PubMed  Google Scholar 

  60. Sinner C, Kaehler ST, Philippu A, Singewald N (2001) Role of nitric oxide in the stress-induced release of serotonin in the locus coeruleus. Naunyn Schmiedebergs Arch Pharmacol 364:103–109

    Google Scholar 

Download references

Acknowledgements

Development of PPC and PPST as well as findings presented in this review was supported by the Deutsche Forschungsgemeinschaft (DFG), Fonds zur Förderung der Wissenschaftlichen Forschung (FWF), Russia Foundation for Fundamental Research, and INTAS grant (No 96-1502) of European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athineos Philippu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Philippu, A., Kraus, M.M. (2017). Push–Pull Superfusion: A Technique for Investigating Involvement of Neurotransmitters in Brain Function. In: Philippu, A. (eds) In Vivo Neuropharmacology and Neurophysiology. Neuromethods, vol 121. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6490-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6490-1_10

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6488-8

  • Online ISBN: 978-1-4939-6490-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics