Skip to main content

A 3D Culture Model to Study How Fluid Pressure and Flow Affect the Behavior of Aggregates of Epithelial Cells

  • Protocol
  • First Online:
Mammary Gland Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1501))

Abstract

Cells are surrounded by mechanical stimuli in their microenvironment. It is important to determine how cells respond to the mechanical information that surrounds them in order to understand both development and disease progression, as well as to be able to predict cell behavior in response to physical stimuli. Here we describe a protocol to determine the effects of interstitial fluid flow on the migratory behavior of an aggregate of epithelial cells in a three-dimensional (3D) culture model. This protocol includes detailed methods for the fabrication of a 3D cell culture chamber with hydrostatic pressure control, the culture of epithelial cells as an aggregate in a collagen gel, and the analysis of collective cell behavior in response to pressure-driven flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Discher DE, Janmey P, Wang YL (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310(5751):1139–1143

    Article  CAS  PubMed  Google Scholar 

  2. Schwarz US, Bischofs IB (2005) Physical determinants of cell organization in soft media. Med Eng Phys 27(9):763–772

    Article  PubMed  Google Scholar 

  3. Jaalouk DE, Lammerding J (2009) Mechanotransduction gone awry. Nat Rev Mol Cell Biol 10(1):63–73

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kolahi KS, Mofrad MR (2010) Mechanotransduction: a major regulator of homeostasis and development. Wiley Interdiscip Rev Syst Biol Med 2(6):625–639

    Article  CAS  PubMed  Google Scholar 

  5. Nelson CM, Gleghorn JP (2012) Sculpting organs: mechanical regulation of tissue development. Annu Rev Biomed Eng 14:129–154

    Article  CAS  PubMed  Google Scholar 

  6. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A, Reinhart-King CA, Margulies SS, Dembo M, Boettiger D, Hammer DA, Weaver VM (2005) Tensional homeostasis and the malignant phenotype. Cancer Cell 8(3):241–254

    Article  CAS  PubMed  Google Scholar 

  7. Lee K, Chen QK, Lui C, Cichon MA, Radisky DC, Nelson CM (2012) Matrix compliance regulates rac1b localization, nadph oxidase assembly, and epithelial-mesenchymal transition. Mol Biol Cell 23(20):4097–4108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Baxter LT, Jain RK (1989) Transport of fluid and macromolecules in tumors. I. Role of interstitial pressure and convection. Microvasc Res 37(1):77–104

    Article  CAS  PubMed  Google Scholar 

  9. Hompland T, Ellingsen C, Ovrebo KM, Rofstad EK (2012) Interstitial fluid pressure and associated lymph node metastasis revealed in tumors by dynamic contrast-enhanced mri. Cancer Res 72(19):4899–4908

    Article  CAS  PubMed  Google Scholar 

  10. Milosevic M, Fyles A, Hedley D, Pintilie M, Levin W, Manchul L, Hill R (2001) Interstitial fluid pressure predicts survival in patients with cervix cancer independent of clinical prognostic factors and tumor oxygen measurements. Cancer Res 61(17):6400–6405

    CAS  PubMed  Google Scholar 

  11. Baker BM, Chen CS (2012) Deconstructing the third dimension: how 3d culture microenvironments alter cellular cues. J Cell Sci 125(Pt 13):3015–3024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kleinman HK, Philp D, Hoffman MP (2003) Role of the extracellular matrix in morphogenesis. Curr Opin Biotechnol 14(5):526–532

    Article  CAS  PubMed  Google Scholar 

  13. Vidi PA, Bissell MJ, Lelievre SA (2013) Three-dimensional culture of human breast epithelial cells: the how and the why. Methods Mol Biol 945:193–219

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bissell MJ, Radisky DC, Rizki A, Weaver VM, Petersen OW (2002) The organizing principle: microenvironmental influences in the normal and malignant breast. Differentiation 70(9-10):537–546

    Article  PubMed  PubMed Central  Google Scholar 

  15. Heldin CH, Rubin K, Pietras K, Ostman A (2004) High interstitial fluid pressure – an obstacle in cancer therapy. Nat Rev Cancer 4(10):806–813

    Article  CAS  PubMed  Google Scholar 

  16. Boucher Y, Jain RK (1992) Microvascular pressure is the principal driving force for interstitial hypertension in solid tumors: implications for vascular collapse. Cancer Res 52(18):5110–5114

    CAS  PubMed  Google Scholar 

  17. Chauhan VP, Stylianopoulos T, Boucher Y, Jain RK (2011) Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies. Annu Rev Chem Biomol Eng 2:281–298

    Article  CAS  PubMed  Google Scholar 

  18. Lunt SJ, Fyles A, Hill RP, Milosevic M (2008) Interstitial fluid pressure in tumors: therapeutic barrier and biomarker of angiogenesis. Future Oncol 4(6):793–802

    Article  PubMed  Google Scholar 

  19. Netti PA, Baxter LT, Boucher Y, Skalak R, Jain RK (1995) Time-dependent behavior of interstitial fluid pressure in solid tumors: implications for drug delivery. Cancer Res 55(22):5451–5458

    CAS  PubMed  Google Scholar 

  20. Haessler U, Teo JC, Foretay D, Renaud P, Swartz MA (2012) Migration dynamics of breast cancer cells in a tunable 3d interstitial flow chamber. Integr Biol (Camb) 4(4):401–409

    Article  CAS  Google Scholar 

  21. Shields JD, Fleury ME, Yong C, Tomei AA, Randolph GJ, Swartz MA (2007) Autologous chemotaxis as a mechanism of tumor cell homing to lymphatics via interstitial flow and autocrine ccr7 signaling. Cancer Cell 11(6):526–538

    Article  CAS  PubMed  Google Scholar 

  22. Polacheck WJ, German AE, Mammoto A, Ingber DE, Kamm RD (2014) Mechanotransduction of fluid stresses governs 3d cell migration. Proc Natl Acad Sci U S A 111(7):2447–2452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Polacheck WJ, Charest JL, Kamm RD (2011) Interstitial flow influences direction of tumor cell migration through competing mechanisms. Proc Natl Acad Sci U S A 108(27):11115–11120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tien J, Truslow JG, Nelson CM (2012) Modulation of invasive phenotype by interstitial pressure-driven convection in aggregates of human breast cancer cells. PLoS One 7(9), e45191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the NIH (GM083997, HL110335, and HL118532), pilot project funding from the NIH/NCI Physical Sciences-Oncology Center at Princeton University (U54CA143803), Concept Award W81XWH-09-1-0565 from the Breast Cancer Research Program of the Department of Defense (to J.T.), the David & Lucile Packard Foundation, the Alfred P. Sloan Foundation, the Camille & Henry Dreyfus Foundation, and the Burroughs Wellcome Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Celeste M. Nelson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Piotrowski-Daspit, A.S., Simi, A.K., Pang, MF., Tien, J., Nelson, C.M. (2017). A 3D Culture Model to Study How Fluid Pressure and Flow Affect the Behavior of Aggregates of Epithelial Cells. In: Martin, F., Stein, T., Howlin, J. (eds) Mammary Gland Development. Methods in Molecular Biology, vol 1501. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6475-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6475-8_12

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6473-4

  • Online ISBN: 978-1-4939-6475-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics