Skip to main content

Multiple Site-Directed and Saturation Mutagenesis by the Patch Cloning Method

  • Protocol
  • First Online:
Book cover In Vitro Mutagenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1498))

Abstract

Constructing protein-coding genes with desired mutations is a basic step for protein engineering. Herein, we describe a multiple site-directed and saturation mutagenesis method, termed MUPAC. This method has been used to introduce multiple site-directed mutations in the green fluorescent protein gene and in the moloney murine leukemia virus reverse transcriptase gene. Moreover, this method was also successfully used to introduce randomized codons at five desired positions in the green fluorescent protein gene, and for simple DNA assembly for cloning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sen S, Venkata-Dasu V, Mandal B (2007) Developments in directed evolution for improving enzyme functions. Appl Biochem Biotechnol 143:212–223

    Article  CAS  PubMed  Google Scholar 

  2. Brustad EM, Arnold FH (2011) Optimizing non-natural protein function with directed evolution. Curr Opin Chem Biol 15:201–210

    Article  CAS  PubMed  Google Scholar 

  3. Labrou NE (2010) Random mutagenesis methods for in vitro directed enzyme evolution. Curr Protein Pept Sci 11:91–100

    Article  CAS  PubMed  Google Scholar 

  4. Reetz MT (2011) Laboratory evolution of stereoselective enzymes: a prolific source of catalysts for asymmetric reactions. Angew Chem Int Ed Engl 50:138–174

    Article  CAS  PubMed  Google Scholar 

  5. Aslanidis C, de Jong PJ (1990) Ligation-independent cloning of PCR products (LIC-PCR). Nucleic Acids Res 18:6069–6074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dennig A, Shivange AV, Marienhagen J, Schwaneberg U (2011) OmniChange: the sequence independent method for simultaneous site-saturation of five codons. PLoS One 6, e26222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gibson DG, Young L, Chuang RY, Venter JC, Hutchison CA 3rd, Smith HO (2009) Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat Methods 6:343–345

    Article  CAS  PubMed  Google Scholar 

  8. Hogrefe HH, Cline J, Youngblood GL, Allen RM (2002) Creating randomized amino acid libraries with the QuikChange multi site-directed mutagenesis Kit. Biotechniques 33:1158–1160, 1162, 1164–1165

    CAS  PubMed  Google Scholar 

  9. Hsiao K (1993) Exonuclease III induced ligase-free directional subcloning of PCR products. Nucleic Acids Res 21:5528–5529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li MZ, Elledge SJ (2007) Harnessing homologous recombination in vitro to generate recombinant DNA via SLIC. Nat Methods 4:251–256

    Article  CAS  PubMed  Google Scholar 

  11. Tillett D, Neilan BA (1999) Enzyme-free cloning: a rapid method to clone PCR products independent of vector restriction enzyme sites. Nucleic Acids Res 27, e26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Y, Werling U, Edelman W (2012) SLiCE: a novel bacterial cell extract-based DNA cloning method. Nucleic Acids Res 40, e55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mitchell LA, Cai Y, Taylor M, Noronha AM, Chuang J, Dai L, Boeke JD (2013) Multichange isothermal mutagenesis: a new strategy for multiple site-directed mutations in plasmid DNA. ACS Synth Biol 2:473–477

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Taniguchi N, Nakayama S, Kawakami T, Murakami H (2013) Patch cloning method for multiple site-directed and saturation mutagenesis. BMC Biotechnol 13:91

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Crameri A, Whitehorn EA, Tate E, Stemmer WP (1996) Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat Biotechnol 14:315–319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Funding Program for Next Generation World-Leading Researchers [LR011 to H.M.] and Grant-in-Aid for Scientific Research (A) [15H02006 to H.M.] from Japan Society for the Promotion of Science (JSPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Murakami .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Taniguchi, N., Murakami, H. (2017). Multiple Site-Directed and Saturation Mutagenesis by the Patch Cloning Method. In: Reeves, A. (eds) In Vitro Mutagenesis. Methods in Molecular Biology, vol 1498. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6472-7_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6472-7_22

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6470-3

  • Online ISBN: 978-1-4939-6472-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics