Skip to main content

Use of Group II Intron Technology for Targeted Mutagenesis in Chlamydia trachomatis

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1498))

Abstract

Dissecting the contribution of genes to virulence in fulfillment of Molecular Koch’s postulates is essential for developing prevention and treatment strategies for bacterial pathogens. This chapter will discuss the application of a targeted, intron-based insertional mutagenesis method for creating mutants in the obligate, intracellular bacterial pathogen Chlamydia trachomatis. The methods employed for intron targeting, mutant selection, and mutant verification will be outlined including available selection markers, gene targeting strategies, and potential pitfalls.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Horn M (2008) Chlamydiae as symbionts in eukaryotes. Annu Rev Microbiol 62:113–131. doi:10.1146/annurev.micro.62.081307.162818

    Article  CAS  PubMed  Google Scholar 

  2. Campbell LA, Rosenfeld ME (2015) Infection and atherosclerosis development. Arch Med Res 46(5):339–350. doi:10.1016/j.arcmed.2015.05.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Darville T (2013) Recognition and treatment of chlamydial infections from birth to adolescence. Adv Exp Med Biol 764:109–122

    Article  CAS  PubMed  Google Scholar 

  4. Hu VH, Holland MJ, Burton MJ (2013) Trachoma: protective and pathogenic ocular immune responses to Chlamydia trachomatis. PLoS Negl Trop Dis 7(2):e2020. doi:10.1371/journal.pntd.0002020, PNTD-D-12-00752 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Hooppaw AJ, Fisher DJ (2015) A coming of age story: Chlamydia in the post-genetic era. Infect Immun. doi:10.1128/IAI.01186-15

    PubMed  Google Scholar 

  6. Wang Y, Kahane S, Cutcliffe LT, Skilton RJ, Lambden PR, Clarke IN (2011) Development of a transformation system for Chlamydia trachomatis: restoration of glycogen biosynthesis by acquisition of a plasmid shuttle vector. PLoS Pathog 7(9):e1002258. doi:10.1371/journal.ppat.1002258, PPATHOGENS-D-11-00473 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Johnson CM, Fisher DJ (2013) Site-specific, insertional inactivation of incA in Chlamydia trachomatis using a group II intron. PLoS One 8(12):e83989. doi:10.1371/journal.pone.0083989

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kari L, Goheen MM, Randall LB, Taylor LD, Carlson JH, Whitmire WM, Virok D, Rajaram K, Endresz V, McClarty G, Nelson DE, Caldwell HD (2011) Generation of targeted Chlamydia trachomatis null mutants. Proc Natl Acad Sci U S A 108(17):7189–7193. doi:10.1073/pnas.11022291081102229108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kokes M, Dunn JD, Granek JA, Nguyen BD, Barker JR, Valdivia RH, Bastidas RJ (2015) Integrating chemical mutagenesis and whole-genome sequencing as a platform for forward and reverse genetic analysis of Chlamydia. Cell Host Microbe 17(5):716–725. doi:10.1016/j.chom.2015.03.014S1931-3128(15)00131-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Nguyen BD, Valdivia RH (2012) Virulence determinants in the obligate intracellular pathogen Chlamydia trachomatis revealed by forward genetic approaches. Proc Natl Acad Sci U S A 109(4):1263–1268. doi:10.1073/pnas.1117884109, 1117884109 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhong J, Karberg M, Lambowitz AM (2003) Targeted and random bacterial gene disruption using a group II intron (targetron) vector containing a retrotransposition-activated selectable marker. Nucleic Acids Res 31(6):1656–1664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lambowitz AM, Zimmerly S (2011) Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 8:a003616. doi:10.1101/cshperspect.a003616, a003616 [pii] cshperspect.a003616 [pii]

    Google Scholar 

  13. Enyeart PJ, Chirieleison SM, Dao MN, Perutka J, Quandt EM, Yao J, Whitt JT, Keatinge-Clay AT, Lambowitz AM, Ellington AD (2013) Generalized bacterial genome editing using mobile group II introns and Cre-lox. Mol Syst Biol 9:685. doi:10.1038/msb.2013.41, msb201341 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Enyeart PJ, Mohr G, Ellington AD, Lambowitz AM (2014) Biotechnological applications of mobile group II introns and their reverse transcriptases: gene targeting, RNA-seq, and non-coding RNA analysis. Mob DNA 5(1):2. doi:10.1186/1759-8753-5-2, 1759-8753-5-2 [pii]

    Article  PubMed  PubMed Central  Google Scholar 

  15. Lowden NM, Yeruva L, Johnson CM, Bowlin AK, Fisher DJ (2015) Use of aminoglycoside 3′ adenyltransferase as a selection marker for Chlamydia trachomatis intron-mutagenesis and in vivo intron stability. BMC Res Notes 8:570. doi:10.1186/s13104-015-1542-9

    Article  PubMed  PubMed Central  Google Scholar 

  16. Thomson NR, Holden MT, Carder C, Lennard N, Lockey SJ, Marsh P, Skipp P, O’Connor CD, Goodhead I, Norbertzcak H, Harris B, Ormond D, Rance R, Quail MA, Parkhill J, Stephens RS (2008) Chlamydia trachomatis: genome sequence analysis of lymphogranuloma venereum isolates. Genome Res 18(1):161–171. doi:10.1101/gr.7020108, gr.7020108 [pii]

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Thompson CC, Griffiths C, Nicod SS, Lowden NM, Wigneshweraraj S, Fisher DJ, McClure MO (2015) The Rsb phosphoregulatory network controls availability of the primary sigma factor in Chlamydia trachomatis and influences the kinetics of growth and development. PLoS Pathog 11(8):e1005125. doi:10.1371/journal.ppat.1005125

    Article  PubMed  PubMed Central  Google Scholar 

  18. Chosewood LC, Wilson DE (2009) Centers for Disease Control and Prevention (U.S.), National Institutes of Health (U.S.). Biosafety in microbiological and biomedical laboratories, vol 21-1112, 5th edn. U.S. Dept. of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institutes of Health, Washington, DC

    Google Scholar 

  19. Green MR, Sambrook J (2012) Molecular cloning: a laboratory manual, 4th edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  20. Scidmore MA (2005) Cultivation and laboratory maintenance of Chlamydia trachomatis. Curr Protoc Microbiol Chapter 11:Unit 11A 1. doi:10.1002/9780471729259.mc11a01s00

  21. Abdelrahman YM, Belland RJ (2005) The chlamydial developmental cycle. FEMS Microbiol Rev 29(5):949–959

    Article  CAS  PubMed  Google Scholar 

  22. Banks J, Eddie B, Schachter J, Meyer KF (1970) Plaque formation by Chlamydia in L cells. Infect Immun 1(3):259–262

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Mueller KE, Fields KA (2015) Application of beta-lactamase reporter fusions as an indicator of effector protein secretion during infections with the obligate intracellular pathogen Chlamydia trachomatis. PLoS One 10(8):e0135295. doi:10.1371/journal.pone.0135295

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants 1R21AI115238-01 and 1R15AI109566-01A1 to DJF. We thank Anna Hooppaw and Jae Claywell for reviewing our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Derek J. Fisher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Key, C.E., Fisher, D.J. (2017). Use of Group II Intron Technology for Targeted Mutagenesis in Chlamydia trachomatis . In: Reeves, A. (eds) In Vitro Mutagenesis. Methods in Molecular Biology, vol 1498. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6472-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6472-7_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6470-3

  • Online ISBN: 978-1-4939-6472-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics