Advertisement

Grafting with Arabidopsis thaliana

  • Charles W. MelnykEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1497)

Abstract

Generating chimeric organisms is an invaluable way to study cell-to-cell movement and non-cell-autonomous actions of molecules. Plant grafting is an ancient method of generating chimeric organisms and recently has been used to study the movement of hormones, proteins, and RNAs. Here, I describe a simple and efficient way to graft Arabidopsis thaliana at the seedling stage to generate plants with roots and shoots of different genotypes. Using this protocol, success rates of over 80 % with up to 80 grafts assembled per hour can be achieved.

Key words

Arabidopsis thaliana Micro-grafting Chimeric plants Mobile molecules Graft-transmissible signal 

Notes

Acknowledgement

I thank Elliot Meyerowitz and Raymond Wightman for critical reading. This work was funded by a Clare College Junior Research Fellowship and through Gatsby Charitable Trust grants GAT3272/C and GAT3273-PR1.

References

  1. 1.
    Melnyk CW, Meyerowitz EM (2015) Plant grafting. Curr Biol 25:R183–R188CrossRefPubMedGoogle Scholar
  2. 2.
    Turnbull CG, Booker JP, Leyser HM (2002) Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J 32:255–262CrossRefPubMedGoogle Scholar
  3. 3.
    Corbesier L, Vincent C, Jang S, Fornara F, Fan Q, Searle I, Giakountis A, Farrona S, Gissot L, Turnbull C et al (2007) FT protein movement contributes to long-distance signaling in floral induction of Arabidopsis. Science 316:1030–1033CrossRefPubMedGoogle Scholar
  4. 4.
    Molnar A, Melnyk CW, Bassett A, Hardcastle TJ, Dunn R, Baulcombe DC (2010) Small silencing RNAs in plants are mobile and direct epigenetic modification in recipient cells. Science 328:872–875CrossRefPubMedGoogle Scholar
  5. 5.
    Rhee SY, Somerville CR (1995) Flat-surface grafting in Arabidopsis thaliana. Plant Mol Biol Rep 13:118–123CrossRefGoogle Scholar
  6. 6.
    Yoo SJ, Hong SM, Jung HS, Ahn JH (2013) The cotyledons produce sufficient FT protein to induce flowering: evidence from cotyledon micrografting in Arabidopsis. Plant Cell Physiol 54:119–128CrossRefPubMedGoogle Scholar
  7. 7.
    Nisar N, Verma S, Pogson BJ, Cazzonelli CI (2012) Inflorescence stem grafting made easy in Arabidopsis. Plant Methods 8:50CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Huang NC, Yu TS (2015) A pin-fasten grafting method provides a non-sterile and highly efficient method for grafting Arabidopsis at diverse developmental stages. Plant Methods 11:38CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Melnyk CW, Schuster C, Leyser O, Meyerowitz EM (2015) A developmental framework for graft formation and vascular reconnection in Arabidopsis thaliana. Curr Biol 25:1306–1318CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Brosnan CA, Mitter N, Christie M, Smith NA, Waterhouse PM, Carroll BJ (2007) Nuclear gene silencing directs reception of long-distance mRNA silencing in Arabidopsis. Proc Natl Acad Sci U S A 104:14741–14746CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Pant BD, Buhtz A, Kehr J, Scheible WR (2008) MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. Plant J 53:731–738CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Green LS, Rogers EE (2004) FRD3 controls iron localization in Arabidopsis. Plant Physiol 136:2523–2531CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Widiez T, El Kafafi S, Girin T, Berr A, Ruffel S, Krouk G, Vayssieres A, Shen WH, Coruzzi GM, Gojon A et al (2011) High nitrogen insensitive 9 (HNI9)-mediated systemic repression of root NO3− uptake is associated with changes in histone methylation. Proc Natl Acad Sci U S A 108:13329–13334CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Andersen TG, Nour-Eldin HH, Fuller VL, Olsen CE, Burow M, Halkier BA (2013) Integration of biosynthesis and long-distance transport establish organ-specific glucosinolate profiles in vegetative Arabidopsis. Plant Cell 25:3133–3145CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Gasperini D, Chauvin A, Acosta IF, Kurenda A, Stolz S, Chetelat A, Wolfender JL, Farmer EE (2015) Axial and radial oxylipin transport. Plant Physiol 169:2244–2254PubMedPubMedCentralGoogle Scholar
  16. 16.
    Ragni L, Nieminen K, Pacheco-Villalobos D, Sibout R, Schwechheimer C, Hardtke CS (2011) Mobile gibberellin directly stimulates Arabidopsis hypocotyl xylem expansion. Plant Cell 23:1322–1336CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K, Kakimoto T (2008) Cytokinins are central regulators of cambial activity. Proc Natl Acad Sci U S A 105:20027–20031CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Van Norman JM, Frederick RL, Sieburth LE (2004) BYPASS1 negatively regulates a root-derived signal that controls plant architecture. Curr Biol 14:1739–1746CrossRefPubMedGoogle Scholar
  19. 19.
    Xia Y, Suzuki H, Borevitz J, Blount J, Guo Z, Patel K, Dixon RA, Lamb C (2004) An extracellular aspartic protease functions in Arabidopsis disease resistance signaling. EMBO J 23:980–988CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Yin H, Yan B, Sun J, Jia P, Zhang Z, Yan X, Chai J, Ren Z, Zheng G, Liu H (2012) Graft-union development: a delicate process that involves cell-cell communication between scion and stock for local auxin accumulation. J Exp Bot 63:4219–4232CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK

Personalised recommendations