Skip to main content

Hormone Receptor Glycosylation

  • Protocol
  • First Online:
Book cover Plant Hormones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1497))

Abstract

Glycosylation is essential for all trees of life. N-glycosylation is one of the most common covalent protein modifications and influences a large variety of cellular processes including protein folding, quality control and protein-receptor interactions. Despite recent progress in understanding of N-glycan biosynthesis, our knowledge of N-glycan function on individual plant proteins is still very limited. In this respect, plant hormone receptors are an interesting group of proteins as several of these proteins are present at distinct sites in the secretory pathway or at the plasma membrane and have numerous potential N-glycosylation sites. Identifying and characterization of N-glycan structures on these proteins is essential to investigate the functional role of this abundant protein modification. Here, a straightforward immunoblot-based approach is presented that enables the analysis of N-glycosylation on endogenous hormone receptors like the brassinosteroid receptor BRI1.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aebi M, Bernasconi R, Clerc S et al (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82

    Article  CAS  PubMed  Google Scholar 

  2. Strasser R (2014) Biological significance of complex N-glycans in plants and their impact on plant physiology. Front Plant Sci 5:363

    Article  PubMed  PubMed Central  Google Scholar 

  3. Lu X, Tintor N, Mentzel T et al (2009) Uncoupling of sustained MAMP receptor signaling from early outputs in an Arabidopsis endoplasmic reticulum glucosidase II allele. Proc Natl Acad Sci U S A 106:22522–22527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Häweker H, Rips S, Koiwa H et al (2010) Pattern recognition receptors require N-glycosylation to mediate plant immunity. J Biol Chem 285:4629–4636

    Article  CAS  PubMed  Google Scholar 

  5. Strasser R (2012) Challenges in O-glycan engineering of plants. Front Plant Sci 3:218

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hijazi M, Velasquez SM, Jamet E et al (2014) An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture. Front Plant Sci 5:395

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bond MR, Hanover JA (2015) A little sugar goes a long way: the cell biology of O-GlcNAc. J Cell Biol 208:869–880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Delporte A, De Zaeytijd J, De Storme N et al (2014) Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin. Plant Physiol Biochem 83:151–158

    Article  CAS  PubMed  Google Scholar 

  9. Olszewski NE, West CM, Sassi SO et al (2010) O-GlcNAc protein modification in plants: evolution and function. Biochim Biophys Acta 1800:49–56

    Article  CAS  PubMed  Google Scholar 

  10. Steiner E, Efroni I, Gopalraj M et al (2012) The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. Plant Cell 24:96–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Niemann MC, Bartrina I, Ashikov A et al (2015) Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity. Proc Natl Acad Sci U S A 112:291–296

    Article  CAS  PubMed  Google Scholar 

  12. Shrimal S, Cherepanova NA, Gilmore R (2015) Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin Cell Dev Biol 41:71–78

    Article  CAS  PubMed  Google Scholar 

  13. Friml J, Jones AR (2010) Endoplasmic reticulum: the rising compartment in auxin biology. Plant Physiol 154:458–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barbez E, Kleine-Vehn J (2013) Divide Et Impera—cellular auxin compartmentalization. Curr Opin Plant Biol 16:78–84

    Article  CAS  PubMed  Google Scholar 

  15. Qiao H, Shen Z, Huang SS et al (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338:390–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Caesar K, Thamm AM, Witthöft J et al (2011) Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. J Exp Bot 62:5571–5580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wulfetange K, Lomin SN, Romanov GA et al (2011) The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol 156:1808–1818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938

    Article  CAS  PubMed  Google Scholar 

  19. Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148

    Article  CAS  PubMed  Google Scholar 

  20. Kim HJ, Ryu H, Hong SH et al (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci U S A 103:814–819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Napier RM, David KM, Perrot-Rechenmann C (2002) A short history of auxin-binding proteins. Plant Mol Biol 49:339–348

    Article  CAS  PubMed  Google Scholar 

  22. Massotte D, Fleig U, Palme K (1995) Purification and characterization of an auxin-binding protein from Arabidopsis thaliana expressed in baculovirus-infected insect cells. Protein Expr Purif 6:220–227

    Article  CAS  PubMed  Google Scholar 

  23. Feraru E, VosolsobÄ› S, Feraru MI et al (2012) Evolution and structural diversification of PILS putative auxin carriers in plants. Front Plant Sci 3:227

    PubMed  PubMed Central  Google Scholar 

  24. She J, Han Z, Kim TW et al (2011) Structural insight into brassinosteroid perception by BRI1. Nature 474:472–476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hüttner S, Veit C, Vavra U et al (2014) Arabidopsis class I α-mannosidases MNS4 and MNS5 are involved in endoplasmic reticulum-associated degradation of misfolded glycoproteins. Plant Cell 26:1712–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jin H, Yan Z, Nam K et al (2007) Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Mol Cell 26:821–830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hong Z, Kajiura H, Su W et al (2012) Evolutionarily conserved glycan signal to degrade aberrant brassinosteroid receptors in Arabidopsis. Proc Natl Acad Sci U S A 109:11437–11442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Koiwa H, Li F, McCully M, Mendoza I et al (2003) The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. Plant Cell 15:2273–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Strasser R, Altmann F, Mach L et al (2004) Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose. FEBS Lett 561:132–136

    Article  CAS  PubMed  Google Scholar 

  30. Blom N, Sicheritz-Pontén T, Gupta R et al (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649

    Article  CAS  PubMed  Google Scholar 

  31. Elbein AD, Tropea JE, Mitchell M et al (1990) Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J Biol Chem 265:15599–15605

    CAS  PubMed  Google Scholar 

  32. Liebminger E, Hüttner S, Vavra U et al (2009) Class I alpha-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell 21:3850–3867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liebminger E, Grass J, Jez J et al (2012) Myrosinases TGG1 and TGG2 from Arabidopsis thaliana contain exclusively oligomannosidic N-glycans. Phytochemistry 84:24–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gruber C, Altmann F (2015) Site-specific glycosylation profiling using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS). Methods Mol Biol 1321:407–415

    Article  PubMed  Google Scholar 

  35. Zielinska DF, Gnad F, Wiśniewski JR et al (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907

    Article  CAS  PubMed  Google Scholar 

  36. Zielinska DF, Gnad F, Schropp K et al (2012) Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46:542–548

    Article  CAS  PubMed  Google Scholar 

  37. Matsui T, Takita E, Sato T et al (2011) N-glycosylation at noncanonical Asn-X-Cys sequences in plant cells. Glycobiology 21:994–999

    Article  CAS  PubMed  Google Scholar 

  38. Kelleher D, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47R–62R

    Article  CAS  PubMed  Google Scholar 

  39. Farid A, Malinovsky FG, Veit C et al (2013) Specialized roles of the conserved subunit OST3/6 of the oligosaccharyltransferase complex in innate immunity and tolerance to abiotic stresses. Plant Physiol 162:24–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Strasser R, Bondili J, Vavra U et al (2007) A unique beta1,3-galactosyltransferase is indispensable for the biosynthesis of N-glycans containing Lewis a structures in Arabidopsis thaliana. Plant Cell 19:2278–2292

    Article  PubMed  PubMed Central  Google Scholar 

  41. Villarejo A, Burén S, Larsson S et al (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231

    Article  CAS  PubMed  Google Scholar 

  42. Tretter V, Altmann F, März L (1991) Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1-3 to the asparagine-linked N-acetylglucosamine residue. Eur J Biochem 199:647–652

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Austrian Science Fund (FWF): P23906.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Strasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Vavra, U., Veit, C., Strasser, R. (2017). Hormone Receptor Glycosylation. In: Kleine-Vehn, J., Sauer, M. (eds) Plant Hormones. Methods in Molecular Biology, vol 1497. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6469-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6469-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6467-3

  • Online ISBN: 978-1-4939-6469-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics