Advertisement

Plant Hormones pp 205-220 | Cite as

Hormone Receptor Glycosylation

  • Ulrike Vavra
  • Christiane Veit
  • Richard StrasserEmail author
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1497)

Abstract

Glycosylation is essential for all trees of life. N-glycosylation is one of the most common covalent protein modifications and influences a large variety of cellular processes including protein folding, quality control and protein-receptor interactions. Despite recent progress in understanding of N-glycan biosynthesis, our knowledge of N-glycan function on individual plant proteins is still very limited. In this respect, plant hormone receptors are an interesting group of proteins as several of these proteins are present at distinct sites in the secretory pathway or at the plasma membrane and have numerous potential N-glycosylation sites. Identifying and characterization of N-glycan structures on these proteins is essential to investigate the functional role of this abundant protein modification. Here, a straightforward immunoblot-based approach is presented that enables the analysis of N-glycosylation on endogenous hormone receptors like the brassinosteroid receptor BRI1.

Key words

N-glycosylation Glycoprotein Brassinosteroid receptor Secretory pathway Endoplasmic reticulum Golgi apparatus 

Notes

Acknowledgements

This work was supported by a grant from the Austrian Science Fund (FWF): P23906.

References

  1. 1.
    Aebi M, Bernasconi R, Clerc S et al (2010) N-glycan structures: recognition and processing in the ER. Trends Biochem Sci 35:74–82CrossRefPubMedGoogle Scholar
  2. 2.
    Strasser R (2014) Biological significance of complex N-glycans in plants and their impact on plant physiology. Front Plant Sci 5:363CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Lu X, Tintor N, Mentzel T et al (2009) Uncoupling of sustained MAMP receptor signaling from early outputs in an Arabidopsis endoplasmic reticulum glucosidase II allele. Proc Natl Acad Sci U S A 106:22522–22527CrossRefPubMedPubMedCentralGoogle Scholar
  4. 7.
    Häweker H, Rips S, Koiwa H et al (2010) Pattern recognition receptors require N-glycosylation to mediate plant immunity. J Biol Chem 285:4629–4636CrossRefPubMedGoogle Scholar
  5. 8.
    Strasser R (2012) Challenges in O-glycan engineering of plants. Front Plant Sci 3:218CrossRefPubMedPubMedCentralGoogle Scholar
  6. 9.
    Hijazi M, Velasquez SM, Jamet E et al (2014) An update on post-translational modifications of hydroxyproline-rich glycoproteins: toward a model highlighting their contribution to plant cell wall architecture. Front Plant Sci 5:395CrossRefPubMedPubMedCentralGoogle Scholar
  7. 10.
    Bond MR, Hanover JA (2015) A little sugar goes a long way: the cell biology of O-GlcNAc. J Cell Biol 208:869–880CrossRefPubMedPubMedCentralGoogle Scholar
  8. 11.
    Delporte A, De Zaeytijd J, De Storme N et al (2014) Cell cycle-dependent O-GlcNAc modification of tobacco histones and their interaction with the tobacco lectin. Plant Physiol Biochem 83:151–158CrossRefPubMedGoogle Scholar
  9. 12.
    Olszewski NE, West CM, Sassi SO et al (2010) O-GlcNAc protein modification in plants: evolution and function. Biochim Biophys Acta 1800:49–56CrossRefPubMedGoogle Scholar
  10. 13.
    Steiner E, Efroni I, Gopalraj M et al (2012) The Arabidopsis O-linked N-acetylglucosamine transferase SPINDLY interacts with class I TCPs to facilitate cytokinin responses in leaves and flowers. Plant Cell 24:96–108CrossRefPubMedPubMedCentralGoogle Scholar
  11. 14.
    Niemann MC, Bartrina I, Ashikov A et al (2015) Arabidopsis ROCK1 transports UDP-GlcNAc/UDP-GalNAc and regulates ER protein quality control and cytokinin activity. Proc Natl Acad Sci U S A 112:291–296CrossRefPubMedGoogle Scholar
  12. 15.
    Shrimal S, Cherepanova NA, Gilmore R (2015) Cotranslational and posttranslocational N-glycosylation of proteins in the endoplasmic reticulum. Semin Cell Dev Biol 41:71–78CrossRefPubMedGoogle Scholar
  13. 16.
    Friml J, Jones AR (2010) Endoplasmic reticulum: the rising compartment in auxin biology. Plant Physiol 154:458–462CrossRefPubMedPubMedCentralGoogle Scholar
  14. 17.
    Barbez E, Kleine-Vehn J (2013) Divide Et Impera—cellular auxin compartmentalization. Curr Opin Plant Biol 16:78–84CrossRefPubMedGoogle Scholar
  15. 18.
    Qiao H, Shen Z, Huang SS et al (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338:390–393CrossRefPubMedPubMedCentralGoogle Scholar
  16. 19.
    Caesar K, Thamm AM, Witthöft J et al (2011) Evidence for the localization of the Arabidopsis cytokinin receptors AHK3 and AHK4 in the endoplasmic reticulum. J Exp Bot 62:5571–5580CrossRefPubMedPubMedCentralGoogle Scholar
  17. 20.
    Wulfetange K, Lomin SN, Romanov GA et al (2011) The cytokinin receptors of Arabidopsis are located mainly to the endoplasmic reticulum. Plant Physiol 156:1808–1818CrossRefPubMedPubMedCentralGoogle Scholar
  18. 21.
    Li J, Chory J (1997) A putative leucine-rich repeat receptor kinase involved in brassinosteroid signal transduction. Cell 90:929–938CrossRefPubMedGoogle Scholar
  19. 22.
    Pandey S, Nelson DC, Assmann SM (2009) Two novel GPCR-type G proteins are abscisic acid receptors in Arabidopsis. Cell 136:136–148CrossRefPubMedGoogle Scholar
  20. 23.
    Kim HJ, Ryu H, Hong SH et al (2006) Cytokinin-mediated control of leaf longevity by AHK3 through phosphorylation of ARR2 in Arabidopsis. Proc Natl Acad Sci U S A 103:814–819CrossRefPubMedPubMedCentralGoogle Scholar
  21. 24.
    Napier RM, David KM, Perrot-Rechenmann C (2002) A short history of auxin-binding proteins. Plant Mol Biol 49:339–348CrossRefPubMedGoogle Scholar
  22. 25.
    Massotte D, Fleig U, Palme K (1995) Purification and characterization of an auxin-binding protein from Arabidopsis thaliana expressed in baculovirus-infected insect cells. Protein Expr Purif 6:220–227CrossRefPubMedGoogle Scholar
  23. 26.
    Feraru E, Vosolsobě S, Feraru MI et al (2012) Evolution and structural diversification of PILS putative auxin carriers in plants. Front Plant Sci 3:227PubMedPubMedCentralGoogle Scholar
  24. 27.
    She J, Han Z, Kim TW et al (2011) Structural insight into brassinosteroid perception by BRI1. Nature 474:472–476CrossRefPubMedPubMedCentralGoogle Scholar
  25. 29.
    Hüttner S, Veit C, Vavra U et al (2014) Arabidopsis class I α-mannosidases MNS4 and MNS5 are involved in endoplasmic reticulum-associated degradation of misfolded glycoproteins. Plant Cell 26:1712–1728CrossRefPubMedPubMedCentralGoogle Scholar
  26. 30.
    Jin H, Yan Z, Nam K et al (2007) Allele-specific suppression of a defective brassinosteroid receptor reveals a physiological role of UGGT in ER quality control. Mol Cell 26:821–830CrossRefPubMedPubMedCentralGoogle Scholar
  27. 32.
    Hong Z, Kajiura H, Su W et al (2012) Evolutionarily conserved glycan signal to degrade aberrant brassinosteroid receptors in Arabidopsis. Proc Natl Acad Sci U S A 109:11437–11442CrossRefPubMedPubMedCentralGoogle Scholar
  28. 33.
    Koiwa H, Li F, McCully M, Mendoza I et al (2003) The STT3a subunit isoform of the Arabidopsis oligosaccharyltransferase controls adaptive responses to salt/osmotic stress. Plant Cell 15:2273–2284CrossRefPubMedPubMedCentralGoogle Scholar
  29. 34.
    Strasser R, Altmann F, Mach L et al (2004) Generation of Arabidopsis thaliana plants with complex N-glycans lacking beta1,2-linked xylose and core alpha1,3-linked fucose. FEBS Lett 561:132–136CrossRefPubMedGoogle Scholar
  30. 35.
    Blom N, Sicheritz-Pontén T, Gupta R et al (2004) Prediction of post-translational glycosylation and phosphorylation of proteins from the amino acid sequence. Proteomics 4:1633–1649CrossRefPubMedGoogle Scholar
  31. 36.
    Elbein AD, Tropea JE, Mitchell M et al (1990) Kifunensine, a potent inhibitor of the glycoprotein processing mannosidase I. J Biol Chem 265:15599–15605PubMedGoogle Scholar
  32. 37.
    Liebminger E, Hüttner S, Vavra U et al (2009) Class I alpha-mannosidases are required for N-glycan processing and root development in Arabidopsis thaliana. Plant Cell 21:3850–3867CrossRefPubMedPubMedCentralGoogle Scholar
  33. 38.
    Liebminger E, Grass J, Jez J et al (2012) Myrosinases TGG1 and TGG2 from Arabidopsis thaliana contain exclusively oligomannosidic N-glycans. Phytochemistry 84:24–30CrossRefPubMedPubMedCentralGoogle Scholar
  34. 39.
    Gruber C, Altmann F (2015) Site-specific glycosylation profiling using Liquid Chromatography-Tandem Mass Spectrometry (LC-MS). Methods Mol Biol 1321:407–415CrossRefPubMedGoogle Scholar
  35. 40.
    Zielinska DF, Gnad F, Wiśniewski JR et al (2010) Precision mapping of an in vivo N-glycoproteome reveals rigid topological and sequence constraints. Cell 141:897–907CrossRefPubMedGoogle Scholar
  36. 41.
    Zielinska DF, Gnad F, Schropp K et al (2012) Mapping N-glycosylation sites across seven evolutionarily distant species reveals a divergent substrate proteome despite a common core machinery. Mol Cell 46:542–548CrossRefPubMedGoogle Scholar
  37. 42.
    Matsui T, Takita E, Sato T et al (2011) N-glycosylation at noncanonical Asn-X-Cys sequences in plant cells. Glycobiology 21:994–999CrossRefPubMedGoogle Scholar
  38. 43.
    Kelleher D, Gilmore R (2006) An evolving view of the eukaryotic oligosaccharyltransferase. Glycobiology 16:47R–62RCrossRefPubMedGoogle Scholar
  39. 44.
    Farid A, Malinovsky FG, Veit C et al (2013) Specialized roles of the conserved subunit OST3/6 of the oligosaccharyltransferase complex in innate immunity and tolerance to abiotic stresses. Plant Physiol 162:24–38CrossRefPubMedPubMedCentralGoogle Scholar
  40. 45.
    Strasser R, Bondili J, Vavra U et al (2007) A unique beta1,3-galactosyltransferase is indispensable for the biosynthesis of N-glycans containing Lewis a structures in Arabidopsis thaliana. Plant Cell 19:2278–2292CrossRefPubMedPubMedCentralGoogle Scholar
  41. 46.
    Villarejo A, Burén S, Larsson S et al (2005) Evidence for a protein transported through the secretory pathway en route to the higher plant chloroplast. Nat Cell Biol 7:1224–1231CrossRefPubMedGoogle Scholar
  42. 47.
    Tretter V, Altmann F, März L (1991) Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1-3 to the asparagine-linked N-acetylglucosamine residue. Eur J Biochem 199:647–652CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Ulrike Vavra
    • 1
  • Christiane Veit
    • 1
  • Richard Strasser
    • 1
    Email author
  1. 1.Department of Applied Genetics and Cell BiologyUniversity of Natural Resources and Life Sciences, BOKUViennaAustria

Personalised recommendations