Real-Time Analysis of the Apical Hook Development

  • Qiang Zhu
  • Petra Žádníková
  • Dajo Smet
  • Dominique Van Der Straeten
  • Eva BenkováEmail author
Part of the Methods in Molecular Biology book series (MIMB, volume 1497)


Mechanisms for cell protection are essential for survival of multicellular organisms. In plants, the apical hook, which is transiently formed in darkness when the germinating seedling penetrates towards the soil surface, plays such protective role and shields the vitally important shoot apical meristem and cotyledons from damage. The apical hook is formed by bending of the upper hypocotyl soon after germination, and it is maintained in a closed stage while the hypocotyl continues to penetrate through the soil and rapidly opens when exposed to light in proximity of the soil surface. To uncover the complex molecular network orchestrating this spatiotemporally tightly coordinated process, monitoring of the apical hook development in real time is indispensable. Here we describe an imaging platform that enables high-resolution kinetic analysis of this dynamic developmental process.

Key words

Differential growth Apical hook development Hormonal cross talk Real-time imaging Phenotype analysis 



We thank Herman Höfte, Todor Asenov, Robert Hauschield, and Marcal Gallemi for help with the establishment of the real-time imaging platform and technical support. This work was supported by the Czech Science Foundation (GA13-39982S) to Eva Benková. Dominique Van Der Straeten acknowledges the Research Foundation Flanders for financial support (G.0656.13N). Dajo Smet holds a PhD fellowship of the Research Foundation Flanders.


  1. 1.
    Silk WK, Erickson RO (1978) Kinematics of hypocotyl curvature. Am J Bot 65:310–319CrossRefGoogle Scholar
  2. 3.
    Raz V, Ecker JR (1999) Regulation of differential growth in the apical hook of Arabidopsis. Development 126:3661–3668PubMedGoogle Scholar
  3. 4.
    Darwin C, Darwin F (1881) The power of movement in plants. D. Appleton and Co, New YorkGoogle Scholar
  4. 6.
    Guzmán P, Ecker JR (1990) Exploiting the triple response of Arabidopsis to identify ethylene-related mutants. Plant Cell 2:513–523CrossRefPubMedPubMedCentralGoogle Scholar
  5. 7.
    Raz V, Koornneef M (2001) Cell division activity during apical hook development. Plant Physiol 125:219–226CrossRefPubMedPubMedCentralGoogle Scholar
  6. 8.
    Boerjan W, Cervera MT, Delarue M, Beeckman T, Dewitte W, Bellini C, Caboche M, Van Onckelen H, Van Montagu M, Inzé D (1995) Superroot, a recessive mutation in Arabidopsis, confers auxin overproduction. Plant Cell 7:1405–1419CrossRefPubMedPubMedCentralGoogle Scholar
  7. 12.
    Žádníková P, Petrášek J, Marhavý P, Raz V, Vandenbussche F, Ding Z, Schwarzerová K, Morita MT, Tasaka M, Hejátko J et al (2010) Role of PIN-mediated auxin efflux in apical hook development of Arabidopsis thaliana. Development 137:607–617CrossRefPubMedGoogle Scholar
  8. 13.
    Vandenbussche F, Petrásek J, Zádníková P, Hoyerová K, Pesek B, Raz V, Swarup R, Bennett M, Zazímalová E, Benková E et al (2010) The auxin influx carriers AUX1 and LAX3 are involved in auxin-ethylene interactions during apical hook development in Arabidopsis thaliana seedlings. Development 137:597–606CrossRefPubMedGoogle Scholar
  9. 14.
    Gallego-Bartolomé J, Arana MV, Vandenbussche F, Zádníková P, Minguet EG, Guardiola V, Van Der Straeten D, Benkova E, Alabadí D, Blázquez MA (2011) Hierarchy of hormone action controlling apical hook development in Arabidopsis. Plant J 67:622–634CrossRefPubMedGoogle Scholar
  10. 15.
    Mazzella MA, Casal JJ, Muschietti JP, Fox AR (2014) Hormonal networks involved in apical hook development in darkness and their response to light. Front Plant Sci 5:52CrossRefPubMedPubMedCentralGoogle Scholar
  11. 16.
    Kuhn H, Galston AW (1992) Physiological asymmetry in etiolated pea epicotyls: relation to patterns of auxin distribution and phototropic behavior. Photochem Photobiol 55:313–318CrossRefPubMedGoogle Scholar
  12. 17.
    Žádníková P, Smet D, Zhu Q, Van Der Straeten D, Benková E (2015) Strategy of seedlings to overcome their sessile nature: auxin in the mobility control. Front Plant Sci 6:218PubMedPubMedCentralGoogle Scholar
  13. 18.
    Vogel JP, Schuerman P, Woeste K, Brandstatter I, Kieber JJ (1998) Isolation and characterization of Arabidopsis mutants defective in the induction of ethylene biosynthesis by cytokinin. Genetics 149:417–427PubMedPubMedCentralGoogle Scholar
  14. 19.
    Woeste KE, Ye C, Kieber JJ (1999) Two Arabidopsis mutants that overproduce ethylene are affected in the posttranscriptional regulation of 1-aminocyclopropane-1-carboxylic acid synthase. Plant Physiol 119:521–530CrossRefPubMedPubMedCentralGoogle Scholar
  15. 20.
    Achard P, Vriezen WH, Van Der Straeten D, Harberd NP (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:2816–2825CrossRefPubMedPubMedCentralGoogle Scholar
  16. 25.
    Smet D, Žádníková P, Vandenbussche F, Benková E, Van Der Straeten D (2014) Dynamic infrared imaging analysis of apical hook development in Arabidopsis: the case of brassinosteroids. New Phytol 202:1398–1411CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Qiang Zhu
    • 1
  • Petra Žádníková
    • 2
  • Dajo Smet
    • 3
  • Dominique Van Der Straeten
    • 3
  • Eva Benková
    • 1
    Email author
  1. 1.Department of Life SciencesInstitute of Science and Technology AustriaKlosterneuburgAustria
  2. 2.Institut für GenetikHeinrich-Heine-Universität DüsseldorfDüsseldorfGermany
  3. 3.Laboratory of Functional Plant Biology, Department of PhysiologyGhent UniversityGhentBelgium

Personalised recommendations