Skip to main content

Assays to Study the Fragmentation of the Golgi Complex During the G2–M Transition of the Cell Cycle

  • Protocol
  • First Online:
The Golgi Complex

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1496))

Abstract

The Golgi complex of mammalian cells is composed of stacks of flattened cisternae that are connected by tubules to form a continuous membrane system, also known as the Golgi ribbon. At the onset of mitosis, the Golgi ribbon is progressively fragmented into small tubular-vesicular clusters and it is reconstituted before completion of cytokinesis. The investigation of the mechanisms behind this reversible cycle of disassembly and reassembly has led to the identification of structural Golgi proteins and regulators. Moreover, these studies allowed to discover that disassembly of the ribbon is necessary for cell entry into mitosis. Here, we describe an in vitro assay that reproduces the mitotic Golgi fragmentation and that has been successfully employed to identify many important mechanisms and proteins involved in the mitotic Golgi reorganization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wilson C, Venditti R, Rega LR, Colanzi A, D’Angelo G, De Matteis MA (2011) The Golgi apparatus: an organelle with multiple complex functions. Biochem J 433:1–9

    Article  CAS  PubMed  Google Scholar 

  2. Cancino J, Luini A (2013) Signaling circuits on the Golgi complex. Traffic 14:121–134

    Article  CAS  PubMed  Google Scholar 

  3. Preuss D, Mulholland J, Franzusoff A, Segev N, Botstein D (1992) Characterization of the Saccharomyces Golgi complex through the cell cycle by immunoelectron microscopy. Mol Biol Cell 3:789–803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pelletier L, Stern CA, Pypaert M, Sheff D, Ngo HM, Roper N, He CY, Hu K, Toomre D, Coppens I, Roos DS, Joiner KA, Warren G (2002) Golgi biogenesis in Toxoplasma gondii. Nature 418:548–552

    Article  CAS  PubMed  Google Scholar 

  5. Misteli T, Warren G (1995) Mitotic disassembly of the Golgi apparatus in vivo. J Cell Sci 108:2715–2727

    CAS  PubMed  Google Scholar 

  6. Colanzi A, Hidalgo Carcedo C, Persico A, Cericola C, Turacchio G, Bonazzi M, Luini A, Corda D (2007) The Golgi mitotic checkpoint is controlled by BARS-dependent fission of the Golgi ribbon into separate stacks in G2. EMBO J 26:2465–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Colanzi A, Suetterlin C, Malhotra V (2003) Cell-cycle-specific Golgi fragmentation: how and why? Curr Opin Cell Biol 15:462–467

    Article  CAS  PubMed  Google Scholar 

  8. Nelson WJ (2000) W(h)ither the Golgi during mitosis? J Cell Biol 149:243–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Gaietta GM, Giepmans BN, Deerinck TJ, Smith WB, Ngan L, Llopis J, Adams SR, Tsien RY, Ellisman MH (2006) Golgi twins in late mitosis revealed by genetically encoded tags for live cell imaging and correlated electron microscopy. Proc Natl Acad Sci U S A 103:17777–17782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sutterlin C, Hsu P, Mallabiabarrena A, Malhotra V (2002) Fragmentation and dispersal of the pericentriolar Golgi complex is required for entry into mitosis in mammalian cells. Cell 109:359–369

    Article  CAS  PubMed  Google Scholar 

  11. Hidalgo Carcedo C, Bonazzi M, Spano S, Turacchio G, Colanzi A, Luini A, Corda D (2004) Mitotic Golgi partitioning is driven by the membrane-fissioning protein CtBP3/BARS. Science 305:93–96

    Article  PubMed  Google Scholar 

  12. Xiang Y, Wang Y (2010) GRASP55 and GRASP65 play complementary and essential roles in Golgi cisternal stacking. J Cell Biol 188:237–251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kienzle C, Eisler SA, Villeneuve J, Brummer T, Olayioye MA, Hausser A (2013) PKD controls mitotic Golgi complex fragmentation through a Raf-MEK1 pathway. Mol Biol Cell 24:222–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Feinstein TN, Linstedt AD (2007) Mitogen-activated protein kinase kinase 1-dependent Golgi unlinking occurs in G2 phase and promotes the G2/M cell cycle transition. Mol Biol Cell 18:594–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Persico A, Cervigni RI, Barretta ML, Corda D, Colanzi A (2010) Golgi partitioning controls mitotic entry through Aurora-A kinase. Mol Biol Cell 21:3708–3721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cervigni RI, Bonavita R, Barretta ML, Spano D, Ayala I, Nakamura N, Corda D, Colanzi A (2015) JNK2 controls fragmentation of the Golgi complex and the G2/M transition through phosphorylation of GRASP65. J Cell Sci 128:2249–2260

    Article  CAS  PubMed  Google Scholar 

  17. Sengupta D, Linstedt AD (2010) Mitotic inhibition of GRASP65 organelle tethering involves Polo-like kinase 1 (PLK1) phosphorylation proximate to an internal PDZ ligand. J Biol Chem 285:39994–40003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Acharya U, Mallabiabarrena A, Acharya JK, Malhotra V (1998) Signaling via mitogen-activated protein kinase kinase (MEK1) is required for Golgi fragmentation during mitosis. Cell 92:183–192

    Article  CAS  PubMed  Google Scholar 

  19. Colanzi A, Deerinck TJ, Ellisman MH, Malhotra V (2000) A specific activation of the mitogen-activated protein kinase kinase 1 (MEK1) is required for Golgi fragmentation during mitosis. J Cell Biol 149:331–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kano F, Nagayama K, Murata M (2000) Reconstitution of the Golgi reassembly process in semi-intact MDCK cells. Biophys Chem 84:261–268

    Article  CAS  PubMed  Google Scholar 

  21. Nakagawa J, Kitten GT, Nigg EA (1989) A somatic cell-derived system for studying both early and late mitotic events in vitro. J Cell Sci 94:449–462

    PubMed  Google Scholar 

  22. Rabouille C, Misteli T, Watson R, Warren G (1995) Reassembly of Golgi stacks from mitotic Golgi fragments in a cell-free system. J Cell Biol 129:605–618

    Article  CAS  PubMed  Google Scholar 

  23. Misteli T, Warren G (1994) COP-coated vesicles are involved in the mitotic fragmentation of Golgi stacks in a cell-free system. J Cell Biol 125:269–282

    Article  CAS  PubMed  Google Scholar 

  24. Tang D, Xiang Y, Wang Y (2010) Reconstitution of the cell cycle-regulated Golgi disassembly and reassembly in a cell-free system. Nat Protoc 5:758–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Tang D, Mar K, Warren G, Wang Y (2008) Molecular mechanism of mitotic Golgi disassembly and reassembly revealed by a defined reconstitution assay. J Biol Chem 283:6085–6094

    Article  CAS  PubMed  Google Scholar 

  26. Munro S (2011) The golgin coiled-coil proteins of the Golgi apparatus. Cold Spring Harb Perspect Biol 3:1–14

    Article  Google Scholar 

  27. Feinstein TN, Linstedt AD (2008) GRASP55 regulates Golgi ribbon formation. Mol Biol Cell 19:2696–2707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Puthenveedu MA, Bachert C, Puri S, Lanni F, Linstedt AD (2006) GM130 and GRASP65-dependent lateral cisternal fusion allows uniform Golgi-enzyme distribution. Nat Cell Biol 8:238–248

    Article  CAS  PubMed  Google Scholar 

  29. Thyberg J, Moskalewski S (1999) Role of microtubules in the organization of the Golgi complex. Exp Cell Res 246:263–279

    Article  CAS  PubMed  Google Scholar 

  30. Rios RM, Bornens M (2003) The Golgi apparatus at the cell centre. Curr Opin Cell Biol 15:60–66

    Article  CAS  PubMed  Google Scholar 

  31. Marra P, Salvatore L, Mironov A Jr, Di Campli A, Di Tullio G, Trucco A, Beznoussenko G, Mironov A, De Matteis MA (2007) The biogenesis of the Golgi ribbon: the roles of membrane input from the ER and of GM130. Mol Biol Cell 18:1595–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Jarvela T, Linstedt AD (2014) Isoform-specific tethering links the Golgi ribbon to maintain compartmentalization. Mol Biol Cell 25:133–144

    Article  PubMed  PubMed Central  Google Scholar 

  33. Yin DX, Schimke RT (1995) BCL-2 expression delays drug-induced apoptosis but does not increase clonogenic survival after drug treatment in HeLa cells. Cancer Res 55:4922–4928

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We apologize to those colleagues whose work we were not able to discuss due to space limitation. A.C. acknowledges the Italian Association for Cancer Research (AIRC, Milan, Italy; IG6074) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inmaculada Ayala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ayala, I., Colanzi, A. (2016). Assays to Study the Fragmentation of the Golgi Complex During the G2–M Transition of the Cell Cycle. In: Brown, W. (eds) The Golgi Complex. Methods in Molecular Biology, vol 1496. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6463-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6463-5_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6461-1

  • Online ISBN: 978-1-4939-6463-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics