Skip to main content

Spatial Organization of Enzyme Cascade on a DNA Origami Nanostructure

  • Protocol
  • First Online:
3D DNA Nanostructure

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1500))

Abstract

Self-assembled DNA nanostructures hold great promise to organize multi-enzyme systems with the precise control of the geometric arrangements. Enzymes modified with single-stranded DNA anchors are assembled onto the DNA origami tiles by hybridizing with the corresponding complementary strands displayed on the surface of the DNA nanostructures. Here, we describe a protocol of assembling a two-enzyme cascade on a discrete, rectangular DNA origami tile, where the distance between enzymes is precisely controlled for investigating the distance-dependent cascade activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fu J, Liu M, Liu Y, Yan H (2012) Spatially-interactive biomolecular networks organized by nucleic acid nanostructures. Acc Chem Res 45:1215–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pinheiro AV, Han D, Shih WM, Yan H (2011) Challenges and opportunities for structural DNA nanotechnology. Nat Nanotechnol 6:763–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Seeman NC (2010) Nanomaterials based on DNA. Ann Rev Biochem 79:65–87

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Seeman NC (1982) Nucleic acid junctions and lattices. J Theor Biol 99:237–247

    Article  CAS  PubMed  Google Scholar 

  5. Chen J, Seeman NC (1991) Synthesis from DNA of a molecule with the connectivity of a cube. Nature 350:631–633

    Article  CAS  PubMed  Google Scholar 

  6. Kallenbach NR, Ma R-I, Seeman NC (1983) An immobile nucleic acid junction constructed from oligonucleotides. Nature 305:829–831

    Article  CAS  Google Scholar 

  7. Fu TJ, Seeman NC (1993) DNA double-crossover molecules. Biochemistry 32:3211–3220

    Article  CAS  PubMed  Google Scholar 

  8. Rothemund PWK (2006) Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302

    Article  CAS  PubMed  Google Scholar 

  9. Ke Y, Ong LL, Shih WM, Yin P (2012) Three-dimensional structures self-assembled from DNA bricks. Science 338:1177–1183

    Article  CAS  PubMed  Google Scholar 

  10. Andersen ES, Dong M, Nielsen M et al (2009) Self-assembly of a nanoscale DNA box with a controllable lid. Nature 459:73–76

    Article  CAS  PubMed  Google Scholar 

  11. Han D, Pal S, Nangreave J, Deng Z, Liu Y, Yan H (2011) DNA origami with complex curvatures in three-dimensional space. Science 332:342–346

    Article  CAS  PubMed  Google Scholar 

  12. Dietz H, Douglas SM, Shih WM (2009) Folding DNA into twisted and curved nanoscale shapes. Science 325:725–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Douglas SM, Dietz H, Liedl T, Hogberg B, Graf F, Shih WM (2009) Self-assembly of DNA into nanoscale three-dimensional shapes. Nature 459:414–418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ke Y, Ong LL, Sun W, Song J, Dong M, Shih WM, Yin P (2014) DNA brick crystals with prescribed depths. Nat Chem 6:994–1002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zheng J, Birktoft JJ, Chen Y, Wang T, Sha R, Constantinou PE, Ginell SL, Mao C, Seeman NC (2009) From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature 461:74–77

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Stein IH, Steinhauer C, Tinnefeld P (2011) Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. J Am Chem Soc 133:4193–4195

    Article  CAS  PubMed  Google Scholar 

  17. Kuzyk A, Schreiber R, Fan Z, Pardatscher G, Roller E-M, Hogele A, Simmel FC, Govorov AO, Liedl T (2012) DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–314

    Article  CAS  PubMed  Google Scholar 

  18. Tan SJ, Campolongo MJ, Luo D, Cheng W (2011) Building plasmonic nanostructures with DNA. Nat Nanotechnol 6:268–276

    Article  CAS  PubMed  Google Scholar 

  19. Williams BAR, Diehnelt CW, Belcher P, Greving M, Woodbury NW, Johnston SA, Chaput JC (2009) Creating protein affinity reagents by combining peptide ligands on synthetic DNA scaffolds. J Am Chem Soc 131:17233–17241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rinker S, Ke Y, Liu Y, Chhabra R, Yan H (2008) Self-assembled DNA nanostructures for distance-dependent multivalent ligand-protein binding. Nat Nanotechnol 3:418–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Iinuma R, Ke Y, Jungmann R, Schlichthaerle T, Woehrstein JB, Yin P (2014) Polyhedra self-assembled from DNA tripods and characterized with 3D DNA-PAINT. Science 344:65–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wilner OI, Weizmann Y, Gill R, Lioubashevski O, Freeman R, Willner I (2009) Enzyme cascades activated on topologically programmed DNA scaffolds. Nat Nanotechnol 4:249–254

    Article  CAS  PubMed  Google Scholar 

  23. Fu J, Yang YR, Johnson-Buck A, Liu M, Liu Y, Walter NG, Woodbury NW, Yan H (2014) Multi-enzyme complexes on DNA scaffolds capable of substrate channelling with an artificial swinging arm. Nat Nanotechnol 9:531–536

    Article  CAS  PubMed  Google Scholar 

  24. Fu J, Liu M, Liu Y, Woodbury NW, Yan H (2012) Interenzyme substrate diffusion for an enzyme cascade organized on spatially addressable DNA nanostructures. J Am Chem Soc 134:5516–5519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Erkelenz M, Kuo C-H, Niemeyer CM (2011) DNA-mediated assembly of cytochrome P450 BM3 subdomains. J Am Chem Soc 133:16111–16118

    Article  CAS  PubMed  Google Scholar 

  26. Liu M, Fu J, Hejesen C, Yang Y, Woodbury NW, Gothelf K, Liu Y, Yan H (2013) A DNA tweezer-actuated enzyme nanoreactor. Nat Commun 4, doi: 10.1038/ncomms3127

  27. Xin L, Zhou C, Yang Z, Liu D (2013) Regulation of an enzyme cascade reaction by a DNA machine. Small 9:3088–3091

    Article  CAS  PubMed  Google Scholar 

  28. Douglas SM, Bachelet I, Church GM (2012) A logic-gated nanorobot for targeted transport of molecular payloads. Science 335:831–834

    Article  CAS  PubMed  Google Scholar 

  29. Linko V, Eerikainen M, Kostiainen MA (2015) A modular DNA origami-based enzyme cascade nanoreactor. Chem Commun 51:5351–5354

    Article  CAS  Google Scholar 

  30. Williams S, Lund K, Lin C, Wonka P, Lindsay S, Yan H (2009) Tiamat: a three-dimensional editing tool for complex DNA structures. In: Goel A, Simmel F, Sosik P (eds) DNA computing, vol 5347, Lecture notes in computer science. Springer, Heidelberg, pp 90–101

    Chapter  Google Scholar 

  31. Douglas SM, Marblestone AH, Teerapittayanon S, Vazquez A, Church GM, Shih WM (2009) Rapid prototyping of 3D DNA-origami shapes with caDNAno. Nucleic Acids Res 37:5001–5006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nojima Y, Iguchi K, Suzuki Y, Sato A (2009) The pH-dependent formation of PEGylated bovine lactoferrin by branched polyethylene glycol (PEG)-n-hydroxysuccinimide (NHS) active esters. Biol Pharm Bull 32:523–526

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgement

This work is supported by an Army Research Office MURI subaward to J.F. (parent award: W911NF-12-1-0420), an Army Research Office Young Investigator award (W911NF-14-1-0434) to J.F., and a Cottrell College Science Award to J.F. Authors are grateful to Dr. Ting Zhang for proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinglin Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Fu, J., Li, T. (2017). Spatial Organization of Enzyme Cascade on a DNA Origami Nanostructure. In: Ke, Y., Wang, P. (eds) 3D DNA Nanostructure. Methods in Molecular Biology, vol 1500. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6454-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6454-3_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6452-9

  • Online ISBN: 978-1-4939-6454-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics