Skip to main content

Recombinant Expression of Cyclotides Using Split Inteins

  • Protocol
  • First Online:
Split Inteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1495))

Abstract

Cyclotides are fascinating microproteins (≈30 residues long) present in several families of plants that share a unique head-to-tail circular knotted topology of three disulfide bridges, with one disulfide penetrating through a macrocycle formed by the two other disulfides and inter-connecting peptide backbones, forming what is called a cystine knot topology. Naturally occurring cyclotides have shown to posses various pharmacologically relevant activities and have been reported to cross cell membranes. Altogether, these features make the cyclotide scaffold an excellent molecular framework for the design of novel peptide-based therapeutics, making them ideal substrates for molecular grafting of biological peptide epitopes. In this chapter we describe how to express a native folded cyclotide using intein-mediated protein trans-splicing in live Escherichia coli cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Daly NL, Rosengren KJ, Craik DJ (2009) Discovery, structure and biological activities of cyclotides. Adv Drug Deliv Rev 61:918–930

    Article  CAS  PubMed  Google Scholar 

  2. Gould A, Ji Y, Aboye TL, Camarero JA (2011) Cyclotides, a novel ultrastable polypeptide scaffold for drug discovery. Curr Pharm Des 17:4294–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Puttamadappa SS, Jagadish K, Shekhtman A, Camarero JA (2010) Backbone dynamics of cyclotide MCoTI-I free and complexed with trypsin. Angew Chem Int Ed Engl 49:7030–7034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Puttamadappa SS, Jagadish K, Shekhtman A, Camarero JA (2011) Erratum in: backbone dynamics of cyclotide MCoTI-I free and complexed with trypsin. Angew Chem Int Ed Engl 50:6948–6949

    Article  CAS  Google Scholar 

  5. Daly NL, Thorstholm L, Greenwood KP, King GJ, Rosengren KJ, Heras B, Martin JL, Craik DJ (2013) Structural insights into the role of the cyclic backbone in a squash trypsin inhibitor. J Biol Chem 288:36141–36148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Saether O, Craik DJ, Campbell ID, Sletten K, Juul J, Norman DG (1995) Elucidation of the primary and three-dimensional structure of the uterotonic polypeptide kalata B1. Biochemistry 34:4147–4158

    Article  CAS  PubMed  Google Scholar 

  7. Austin J, Kimura RH, Woo YH, Camarero JA (2010) In vivo biosynthesis of an Ala-scan library based on the cyclic peptide SFTI-1. Amino Acids 38:1313–1322

    Article  CAS  PubMed  Google Scholar 

  8. Huang YH, Colgrave ML, Clark RJ, Kotze AC, Craik DJ (2010) Lysine-scanning mutagenesis reveals an amendable face of the cyclotide kalata B1 for the optimization of nematocidal activity. J Biol Chem 285:10797–10805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Simonsen SM, Sando L, Rosengren KJ, Wang CK, Colgrave ML, Daly NL, Craik DJ (2008) Alanine scanning mutagenesis of the prototypic cyclotide reveals a cluster of residues essential for bioactivity. J Biol Chem 283:9805–9813

    Article  CAS  PubMed  Google Scholar 

  10. Garcia AE, Camarero JA (2010) Biological activities of natural and engineered cyclotides, a novel molecular scaffold for peptide-based therapeutics. Curr Mol Pharmacol 3:153–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Aboye TL, Ha H, Majumder S, Christ F, Debyser Z, Shekhtman A, Neamati N, Camarero JA (2012) Design of a novel cyclotide-based CXCR4 antagonist with anti-human immunodeficiency virus (HIV)-1 activity. J Med Chem 55:10729–10734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wong CT, Rowlands DK, Wong CH, Lo TW, Nguyen GK, Li HY, Tam JP (2012) Orally active peptidic bradykinin B1 receptor antagonists engineered from a cyclotide scaffold for inflammatory pain treatment. Angew Chem Int Ed Engl 51:5620–5624

    Article  CAS  PubMed  Google Scholar 

  13. Chan LY, Gunasekera S, Henriques ST, Worth NF, Le SJ, Clark RJ, Campbell JH, Craik DJ, Daly NL (2011) Engineering pro-angiogenic peptides using stable, disulfide-rich cyclic scaffolds. Blood 118:6709–6717

    Article  CAS  PubMed  Google Scholar 

  14. Ji Y, Majumder S, Millard M, Borra R, Bi T, Elnagar AY, Neamati N, Shekhtman A, Camarero JA (2013) In vivo activation of the p53 tumor suppressor pathway by an engineered cyclotide. J Am Chem Soc 135:11623–11633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Contreras J, Elnagar AY, Hamm-Alvarez SF, Camarero JA (2011) Cellular uptake of cyclotide MCoTI-I follows multiple endocytic pathways. J Control Release 155:134–143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cascales L, Henriques ST, Kerr MC, Huang YH, Sweet MJ, Daly NL, Craik DJ (2011) Identification and characterization of a new family of cell-penetrating peptides: cyclic cell-penetrating peptides. J Biol Chem 286:36932–36943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Henriques ST, Craik DJ (2010) Cyclotides as templates in drug design. Drug Discov Today 15:57–64

    Article  CAS  PubMed  Google Scholar 

  18. Mylne JS, Chan LY, Chanson AH, Daly NL, Schaefer H, Bailey TL, Nguyencong P, Cascales L, Craik DJ (2012) Cyclic peptides arising by evolutionary parallelism via asparaginyl-endopeptidase-mediated biosynthesis. Plant Cell 24:2765–2778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Poth AG, Mylne JS, Grassl J, Lyons RE, Millar AH, Colgrave ML, Craik DJ (2012) Cyclotides associate with leaf vasculature and are the products of a novel precursor in petunia (Solanaceae). J Biol Chem 287:27033–27046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Poth AG, Colgrave ML, Lyons RE, Daly NL, Craik DJ (2011) Discovery of an unusual biosynthetic origin for circular proteins in legumes. Proc Natl Acad Sci U S A 108:1027–1032

    Article  Google Scholar 

  21. Jennings C, West J, Waine C, Craik D, Anderson M (2001) Biosynthesis and insecticidal properties of plant cyclotides: the cyclic knotted proteins from Oldenlandia affinis. Proc Natl Acad Sci U S A 98:10614–10619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Gillon AD, Saska I, Jennings CV, Guarino RF, Craik DJ, Anderson MA (2008) Biosynthesis of circular proteins in plants. Plant J 53:505–515

    Article  CAS  PubMed  Google Scholar 

  23. Saska I, Gillon AD, Hatsugai N, Dietzgen RG, Hara-Nishimura I, Anderson MA, Craik DJ (2007) An asparaginyl endopeptidase mediates in vivo protein backbone cyclization. J Biol Chem 282:29721–29728

    Article  CAS  PubMed  Google Scholar 

  24. Nguyen GK, Wang S, Qiu Y, Hemu X, Lian Y, Tam JP (2014) Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis. Nat Chem Biol 10:732–738

    Article  CAS  PubMed  Google Scholar 

  25. Jagadish K, Borra R, Lacey V, Majumder S, Shekhtman A, Wang L, Camarero JA (2013) Expression of fluorescent cyclotides using protein trans-splicing for easy monitoring of cyclotide-protein interactions. Angew Chem Int Ed Engl 52:3126–3131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Austin J, Wang W, Puttamadappa S, Shekhtman A, Camarero JA (2009) Biosynthesis and biological screening of a genetically encoded library based on the cyclotide MCoTI-I. Chembiochem 10:2663–2670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Camarero JA, Kimura RH, Woo YH, Shekhtman A, Cantor J (2007) Biosynthesis of a fully functional cyclotide inside living bacterial cells. Chembiochem 8:1363–1366

    Article  CAS  PubMed  Google Scholar 

  28. Kimura RH, Tran AT, Camarero JA (2006) Biosynthesis of the cyclotide kalata B1 by using protein splicing. Angew Chem Int Ed 45:973–976

    Article  CAS  Google Scholar 

  29. Hernandez JF, Gagnon J, Chiche L, Nguyen TM, Andrieu JP, Heitz A, Trinh Hong T, Pham TT, Le Nguyen D (2000) Squash trypsin inhibitors from Momordica cochinchinensis exhibit an atypical macrocyclic structure. Biochemistry 39:5722–5730

    Article  CAS  PubMed  Google Scholar 

  30. Sancheti H, Camarero JA (2009) “Splicing up” drug discovery. Cell-based expression and screening of genetically-encoded libraries of backbone-cyclized polypeptides. Adv Drug Deliv Rev 61:908–917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Zettler J, Schutz V, Mootz HD (2009) The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett 583:909–914

    Article  CAS  PubMed  Google Scholar 

  32. Iwai H, Zuger S, Jin J, Tam PH (2006) Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett 580:1853–1858

    Article  CAS  PubMed  Google Scholar 

  33. Jagadish K, Gould A, Borra R, Majumder S, Mushtaq Z, Shekhtman A, Camarero JA (2015) Recombinant expression and phenotypic screening of a bioactive cyclotide against alpha-synuclein-induced cytotoxicity in baker’s yeast. Angew Chem Int Ed Engl 54:8390–8394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio A. Camarero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Jagadish, K., Camarero, J.A. (2017). Recombinant Expression of Cyclotides Using Split Inteins. In: Mootz, H. (eds) Split Inteins. Methods in Molecular Biology, vol 1495. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6451-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6451-2_4

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6449-9

  • Online ISBN: 978-1-4939-6451-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics