Skip to main content

Split-Intein Triggered Protein Hydrogels

  • Protocol
  • First Online:
Book cover Split Inteins

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1495))

Abstract

Proteins are nature’s building blocks and indispensable in living organisms. Protein-based hydrogels have a wide variety of applications in research and biotechnology. In this chapter, we describe an intein-mediated protein hydrogel that utilizes two synthetic soluble protein block copolymers, each containing a subunit of a trimeric protein that serves as a cross-linker and one half of the naturally split DnaE intein from Nostoc punctiforme. Mixing of these two protein block copolymers initiates an intein trans-splicing reaction that constitutes a self-assembling polypeptide flanked by cross-linkers, triggering protein hydrogel formation. The generated hydrogels are highly stable under both acidic and basic conditions, and at temperatures up to 50 °C. In addition, these hydrogels are able to undergo rapid reassembly after shear-induced rupture. Incorporation of an appropriate binding motif into the protein block copolymers enables the convenient site-specific incorporation of functional globular proteins into the hydrogel network.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Langer R, Tirrell DA (2004) Designing materials for biology and medicine. Nature 428(6982):487–492

    Article  CAS  PubMed  Google Scholar 

  2. Kopeček J, Yang J (2012) Smart self-assembled hybrid hydrogel biomaterials. Angew Chem Int Ed 51(30):7396–7417. doi:10.1002/anie.201201040

    Article  CAS  Google Scholar 

  3. Banta S, Wheeldon IR, Blenner M (2010) Protein engineering in the development of functional hydrogels. Annu Rev Biomed Eng 12:167–186

    Article  CAS  PubMed  Google Scholar 

  4. Ramirez M, Guan D, Ugaz V, Chen Z (2013) Intein-triggered artificial protein hydrogels that support the immobilization of bioactive proteins. J Am Chem Soc 135(14):5290–5293

    Article  CAS  PubMed  Google Scholar 

  5. Sun F, Zhang WB, Mahdavi A, Arnold FH, Tirrell DA (2014) Synthesis of bioactive protein hydrogels by genetically encoded SpyTag-SpyCatcher chemistry. Proc Natl Acad Sci U S A 111(31):11269–11274. doi:10.1073/pnas.1401291111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wong Po Foo CT, Lee JS, Mulyasasmita W, Parisi-Amon A, Heilshorn SC (2009) Two-component protein-engineered physical hydrogels for cell encapsulation. Proc Natl Acad Sci U S A 106(52):22067–22072. doi:10.1073/pnas.0904851106

    Article  PubMed  PubMed Central  Google Scholar 

  7. Guan D, Ramirez M, Shao L, Jacobsen D, Barrera I, Lutkenhaus J, Chen Z (2013) Two-component protein hydrogels assembled using an engineered disulfide-forming protein-ligand pair. Biomacromolecules 14(8):2909–2916. doi:10.1021/bm400814u

    Article  CAS  PubMed  Google Scholar 

  8. Shen W, Zhang K, Kornfield JA, Tirrell DA (2006) Tuning the erosion rate of artificial protein hydrogels through control of network topology. Nat Mater 5(2):153–158. doi:10.1038/nmat1573, nmat1573 [pii]

    Article  CAS  PubMed  Google Scholar 

  9. Shen W, Kornfield JA, Tirrell DA (2007) Dynamic properties of artificial protein hydrogels assembled through aggregation of leucine zipper peptide domains. Macromolecules 40(3):689–692

    Article  CAS  Google Scholar 

  10. Muralidharan V, Muir TW (2006) Protein ligation: an enabling technology for the biophysical analysis of proteins. Nat Methods 3(6):429–438

    Article  CAS  PubMed  Google Scholar 

  11. Zettler J, Schütz V, Mootz HD (2009) The naturally split Npu DnaE intein exhibits an extraordinarily high rate in the protein trans-splicing reaction. FEBS Lett 583(5):909–914

    Article  CAS  PubMed  Google Scholar 

  12. Iwai H, Züger S, Jin J, Tam P-H (2006) Highly efficient protein trans-splicing by a naturally split DnaE intein from Nostoc punctiforme. FEBS Lett 580(7):1853–1858

    Article  CAS  PubMed  Google Scholar 

  13. Tanaka Y, Tsumoto K, Nakanishi T, Yasutake Y, Sakai N, Yao M, Tanaka I, Kumagai I (2004) Structural implications for heavy metal-induced reversible assembly and aggregation of a protein: the case of Pyrococcus horikoshii CutA. FEBS Lett 556(1):167–174

    Article  CAS  PubMed  Google Scholar 

  14. Sawano M, Yamamoto H, Ogasahara K, Kidokoro S, Katoh S, Ohnuma T, Katoh E, Yokoyama S, Yutani K (2008) Thermodynamic basis for the stabilities of three CutA1s from Pyrococcus horikoshii, Thermus thermophilus, and Oryza sativa, with unusually high denaturation temperatures. Biochemistry 47(2):721–730

    Article  CAS  PubMed  Google Scholar 

  15. McGrath KP, Fournier MJ, Mason TL, Tirrell DA (1992) Genetically directed syntheses of new polymeric materials. Expression of artificial genes encoding proteins with repeating-(AlaGly) 3ProGluGly-elements. J Am Chem Soc 114(2):727–733

    Article  CAS  Google Scholar 

  16. Shen W, Lammertink RGH, Sakata JK, Kornfield JA, Tirrell DA (2005) Assembly of an artificial protein hydrogel through leucine zipper aggregation and disulfide bond formation. Macromolecules 38(9):3909–3916

    Article  CAS  Google Scholar 

  17. Shah NH, Dann GP, Vila-Perello M, Liu Z, Muir TW (2012) Ultrafast protein splicing is common among cyanobacterial split inteins: implications for protein engineering. J Am Chem Soc 134(28):11338–11341. doi:10.1021/ja303226x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carvajal-Vallejos P, Pallisse R, Mootz HD, Schmidt SR (2012) Unprecedented rates and efficiencies revealed for new natural split inteins from metagenomic sources. J Biol Chem 287(34):28686–28696. doi:10.1074/jbc.M112.372680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ito F, Usui K, Kawahara D, Suenaga A, Maki T, Kidoaki S, Suzuki H, Taiji M, Itoh M, Hayashizaki Y, Matsuda T (2010) Reversible hydrogel formation driven by protein-peptide-specific interaction and chondrocyte entrapment. Biomaterials 31(1):58–66. doi:10.1016/j.biomaterials.2009.09.026, S0142-9612(09)00956-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  20. Lockless SW, Muir TW (2009) Traceless protein splicing utilizing evolved split inteins. Proc Natl Acad Sci U S A 106(27):10999–11004. doi:10.1073/pnas.0902964106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dueber JE, Wu GC, Malmirchegini GR, Moon TS, Petzold CJ, Ullal AV, Prather KLJ, Keasling JD (2009) Synthetic protein scaffolds provide modular control over metabolic flux. Nat Biotechnol 27(8):753–759. doi:10.1038/Nbt.1557

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation CAREER award, US Air force YIP and Norman Hackman Advanced Research Program. We would like to acknowledge Dr. David Tirrell (Caltech) for his kind gift of the plasmid pQE9 AC10Atrp [16], Dr. Takehisa Matsuda (Kanazawa Institute of Technology, Hakusan, Ishikawa, Japan) for his kind gift of the plasmid pET30-CutA-Tip1 [19], Dr. Tom Muir (Princeton University) for his kind gift of the plasmid KanR-IntRBS-NpuNC-CFN [20], and Dr. Jay D. Keasling (UC Berkley) for his kind gift of the plasmid pJD757 [21].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhilei Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ramirez, M.A., Chen, Z. (2017). Split-Intein Triggered Protein Hydrogels. In: Mootz, H. (eds) Split Inteins. Methods in Molecular Biology, vol 1495. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6451-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6451-2_11

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6449-9

  • Online ISBN: 978-1-4939-6451-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics