Skip to main content

Plate-Based Assay for Measuring Direct Semaphorin–Neuropilin Interactions

  • Protocol
  • First Online:
Semaphorin Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1493))

Abstract

The semaphorins are an essential family of axon guidance molecules that can be either secreted or are transmembrane proteins. Class 3 semaphorin (Sema3) family members are secreted and provide long-range guidance cues through two receptor families: neuropilins (Nrp) and plexins. Nrp is uniquely required for high-affinity Sema3 binding and signaling. Therefore, characterizing the molecular details of the Sema3/Nrp interaction is important for understanding the broader physiological and pathological role of the Sema3 family of proteins. Here we describe an in vitro plate-based binding assay for characterization of the Sema3/Nrp interaction. This assay utilizes Nrp-affinity plates and an alkaline phosphatase (AP)-Sema3 fusion to rapidly measure direct Sema3/Nrp binding. This assay can be used to measure receptor-ligand binding, the contribution of different domains, and exogenous factors, and to characterize competitive ligand binding.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yazdani U, Terman JR (2006) The semaphorins. Genome Biol 7(3):211

    Article  PubMed  PubMed Central  Google Scholar 

  2. Parker MW, Guo HF, Li X et al (2012) Function of members of the neuropilin family as essential pleiotropic cell surface receptors. Biochemistry 51(47):9437–9446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Takahashi T, Fournier A, Nakamura F et al (1999) Plexin-neuropilin-1 complexes form functional semaphorin-3A receptors. Cell 99(1):59–69

    Article  CAS  PubMed  Google Scholar 

  4. Tamagnone L, Artigiani S, Chen H et al (1999) Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell 99(1):71–80

    Article  CAS  PubMed  Google Scholar 

  5. Kolodkin AL, Tessier-Lavigne M (2011) Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harbor Perspect Biol 3(6)

    Google Scholar 

  6. Kumanogoh A, Kikutani H (2013) Immunological functions of the neuropilins and plexins as receptors for semaphorins. Nat Rev Immunol 13(11):802–814

    Article  PubMed  Google Scholar 

  7. Staton CA (2011) Class 3 semaphorins and their receptors in physiological and pathological angiogenesis. Biochem Soc Trans 39(6):1565–1570

    Article  CAS  PubMed  Google Scholar 

  8. Kolodkin AL, Matthes DJ, Goodman CS (1993) The semaphorin genes encode a family of transmembrane and secreted growth cone guidance molecules. Cell 75(7):1389–1399

    Article  CAS  PubMed  Google Scholar 

  9. Antipenko A, Himanen JP, van Leyen K et al (2003) Structure of the semaphorin-3A receptor binding module. Neuron 39(4):589–598

    Article  CAS  PubMed  Google Scholar 

  10. Janssen BJ, Malinauskas T, Weir GA et al (2012) Neuropilins lock secreted semaphorins onto plexins in a ternary signaling complex. Nat Struct Mol Biol 19(12):1293–1299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Appleton BA, Wu P, Maloney J et al (2007) Structural studies of neuropilin/antibody complexes provide insights into semaphorin and VEGF binding. EMBO J 26(23):4902–4912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Vander Kooi CW, Jusino MA, Perman B et al (2007) Structural basis for ligand and heparin binding to neuropilin B domains. Proc Natl Acad Sci U S A 104(15):6152–6157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. He Z, Tessier-Lavigne M (1997) Neuropilin is a receptor for the axonal chemorepellent Semaphorin III. Cell 90(4):739–751

    Article  CAS  PubMed  Google Scholar 

  14. Chen H, Chedotal A, He Z et al (1997) Neuropilin-2, a novel member of the neuropilin family, is a high affinity receptor for the semaphorins Sema E and Sema IV but not Sema III. Neuron 19(3):547–559

    Article  CAS  PubMed  Google Scholar 

  15. Feiner L, Koppel AM, Kobayashi H et al (1997) Secreted chick semaphorins bind recombinant neuropilin with similar affinities but bind different subsets of neurons in situ. Neuron 19(3):539–545

    Article  CAS  PubMed  Google Scholar 

  16. Koppel AM, Feiner L, Kobayashi H et al (1997) A 70 amino acid region within the semaphorin domain activates specific cellular response of semaphorin family members. Neuron 19(3):531–537

    Article  CAS  PubMed  Google Scholar 

  17. Gu C, Limberg BJ, Whitaker GB et al (2002) Characterization of neuropilin-1 structural features that confer binding to semaphorin 3A and vascular endothelial growth factor 165. J Biol Chem 277(20):18069–18076

    Article  CAS  PubMed  Google Scholar 

  18. Chen H, He Z, Bagri A et al (1998) Semaphorin-neuropilin interactions underlying sympathetic axon responses to class III semaphorins. Neuron 21(6):1283–1290

    Article  CAS  PubMed  Google Scholar 

  19. Merte J, Wang Q, Vander Kooi CW et al (2010) A forward genetic screen in mice identifies Sema3A(K108N), which binds to neuropilin-1 but cannot signal. J Neurosci 30(16):5767–5775

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Parker MW, Hellman LM, Xu P et al (2010) Furin processing of semaphorin 3F determines its anti-angiogenic activity by regulating direct binding and competition for neuropilin. Biochemistry 49(19):4068–4075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Adams RH, Lohrum M, Klostermann A et al (1997) The chemorepulsive activity of secreted semaphorins is regulated by furin-dependent proteolytic processing. EMBO J 16(20):6077–6086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Parker MW, Linkugel AD, Vander Kooi CW (2013) Effect of C-terminal sequence on competitive semaphorin binding to neuropilin-1. J Mol Biol 425(22):4405–4414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Guo HF, Li X, Parker MW et al (2013) Mechanistic basis for the potent anti-angiogenic activity of semaphorin 3F. Biochemistry 52(43):7551–7558

    Article  CAS  PubMed  Google Scholar 

  24. Kolodkin AL, Levengood DV, Rowe EG et al (1997) Neuropilin is a semaphorin III receptor. Cell 90(4):753–762

    Article  CAS  PubMed  Google Scholar 

  25. Leahy DJ, Dann CE 3rd, Longo P et al (2000) A mammalian expression vector for expression and purification of secreted proteins for structural studies. Protein Expr Purif 20(3):500–506

    Article  CAS  PubMed  Google Scholar 

  26. Jardin BA, Zhao Y, Selvaraj M et al (2008) Expression of SEAP (secreted alkaline phosphatase) by baculovirus mediated transduction of HEK 293 cells in a hollow fiber bioreactor system. J Biotechnol 135(3):272–280

    Article  CAS  PubMed  Google Scholar 

  27. Longo PA, Kavran JM, Kim MS et al (2013) Transient mammalian cell transfection with polyethylenimine (PEI). Methods Enzymol 529:227–240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Aricescu AR, Lu W, Jones EY (2006) A time- and cost-efficient system for high-level protein production in mammalian cells. Acta Crystallogr D Biol Crystallogr 62(Pt 10):1243–1250

    Article  PubMed  Google Scholar 

  29. Muller N, Girard P, Hacker DL et al (2005) Orbital shaker technology for the cultivation of mammalian cells in suspension. Biotechnol Bioeng 89(4):400–406

    Article  CAS  PubMed  Google Scholar 

  30. Parker MW, Xu P, Guo HF et al (2012) Mechanism of selective VEGF-A binding by neuropilin-1 reveals a basis for specific ligand inhibition. PLoS One 7(11):e49177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Parker MW, Xu P, Li X et al (2012) Structural basis for selective vascular endothelial growth factor-A (VEGF-A) binding to neuropilin-1. J Biol Chem 287(14):11082–11089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by National Institutes of Health grants R01GM094155 (C.W.V.K.) and T32HL072743 (M.W.P.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig W. Vander Kooi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Parker, M.W., Vander Kooi, C.W. (2017). Plate-Based Assay for Measuring Direct Semaphorin–Neuropilin Interactions. In: Terman, J. (eds) Semaphorin Signaling. Methods in Molecular Biology, vol 1493. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6448-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6448-2_5

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6446-8

  • Online ISBN: 978-1-4939-6448-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics