Skip to main content

Characterizing Semaphorin Signaling In Vivo Using C. elegans

  • Protocol
  • First Online:
Semaphorin Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1493))

Abstract

A small model animal Caenorhabditis elegans is particularly suitable for genetic analysis, but cell-type-specific biochemistry is a formidable task in this organism. Here we describe techniques utilizing transgenic C. elegans strains expressing epitope-tagged proteins for analyzing biochemical events, such as protein phosphorylation and formation of protein complex, in a small number of a specific group of cells at a defined stage of development. The techniques are useful for elucidating that C. elegans semaphorin-plexin signaling systems regulate epidermal morphogenesis through modulating TOR signaling and its downstream targets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Roy PJ, Zheng H, Warren CE et al (2000) mab-20 encodes Semaphorin-2a and is required to prevent ectopic cell contacts during epidermal morphogenesis in Caenorhabditis elegans. Development 127:755–767

    CAS  PubMed  Google Scholar 

  2. Fujii T, Nakao F, Shibata Y et al (2002) Caenorhabditis elegans PlexinA, PLX-1, interacts with transmembrane semaphorins and regulates epidermal morphogenesis. Development 129:2053–2063

    CAS  PubMed  Google Scholar 

  3. Ginzburg VE, Roy PJ, Culotti JG (2002) Semaphorin 1a and semaphorin 1b are required for correct epidermal cell positioning. Development 129:2065–2078

    CAS  PubMed  Google Scholar 

  4. Dalpé G, Zhang LW, Zheng H et al (2004) Conversion of cell movement responses to Semaphorin-1 and Plexin-1 from attraction to repulsion by lowered levels of specific RAC GTPases in C. elegans. Development 131:2073–2088. doi:10.1242/dev.01063

    Article  PubMed  Google Scholar 

  5. Ikegami R, Zheng H, Ong SH et al (2004) Integration of semaphorin-2A/MAB-20, ephrin-4, and UNC-129 TGF-beta signaling pathways regulates sorting of distinct sensory rays in C. elegans. Dev Cell 6:383–395

    Article  CAS  PubMed  Google Scholar 

  6. Nakao F, Hudson ML, Suzuki M et al (2007) The PLEXIN PLX-2 and the ephrin EFN-4 have distinct roles in MAB-20/Semaphorin 2A signaling in Caenorhabditis elegans morphogenesis. Genetics 176:1591–1607. doi:10.1534/genetics.106.067116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Liu Z, Fujii T, Nukazuka A et al (2005) C. elegans PlexinA PLX-1 mediates a cell contact-dependent stop signal in vulval precursor cells. Dev Biol 282:138–151. doi:10.1016/j.ydbio.2005.03.002

    Article  CAS  PubMed  Google Scholar 

  8. Wang X, Zhang W, Cheever T et al (2008) The C. elegans L1CAM homologue LAD-2 functions as a coreceptor in MAB-20/Sema2 mediated axon guidance. J Cell Biol 180:233–246. doi:10.1083/jcb.200704178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mizumoto K, Shen K (2013) Interaxonal interaction defines tiled presynaptic innervation in C. elegans. Neuron 77:655–666. doi:10.1016/j.neuron.2012.12.031

    Article  CAS  PubMed  Google Scholar 

  10. Nukazuka A, Fujisawa H, Inada T et al (2008) Semaphorin controls epidermal morphogenesis by stimulating mRNA translation via eIF2alpha in Caenorhabditis elegans. Genes Dev 22:1025–1036. doi:10.1101/gad.1644008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nukazuka A, Tamaki S, Matsumoto K et al (2011) A shift of the TOR adaptor from Rictor towards Raptor by semaphorin in C. elegans. Nat Commun 2:484. doi:10.1038/ncomms1495

    Article  PubMed  PubMed Central  Google Scholar 

  12. Brenner S (1968) The genetics of Caenorhabditis elegans. Genetics 77:71–94

    Google Scholar 

  13. Wood WB (1988) Introduction to C. elegans biology. In: Wood WB (ed) The nematode Caenorhabditis elegans. Cold Spring Harbor Laboratory, New York, pp 1–16

    Google Scholar 

  14. Harris HE, Epstein HF (1977) Myosin and paramyosin of Caenorhabditis elegans: biochemical and structural properties of wild-type and mutant proteins. Cell 10:709–719

    Article  CAS  PubMed  Google Scholar 

  15. Cox GN, Kusch M, Edgar RS (1981) Cuticle of Caenorhabditis elegans: its isolation and partial characterization. J Cell Biol 90:7–17

    Article  CAS  PubMed  Google Scholar 

  16. Ono S (1999) Purification and biochemical characterization of actin from Caenorhabditis elegans: its difference from rabbit muscle actin in the interaction with nematode ADF/cofilin. Cell Motil Cytoskeleton 43:128–136, 10.1002/(SICI)1097-0169(1999)43:2<128::AID-CM4>3.0.CO;2-C

    Article  CAS  PubMed  Google Scholar 

  17. Zhang Y, Ma C, Delohery T et al (2002) Identification of genes expressed in C. elegans touch receptor neurons. Nature 418:331–335. doi:10.1038/nature00891

    Article  CAS  PubMed  Google Scholar 

  18. Von Stetina SE, Watson JD, Fox RM et al (2007) Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biol 8:R135. doi:10.1186/gb-2007-8-7-r135

    Article  Google Scholar 

  19. Roy PJ, Stuart JM, Lund J et al (2002) Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature 418:975–979. doi:10.1038/nature01012

    CAS  PubMed  Google Scholar 

  20. Kunitomo H, Uesugi H, Kohara Y et al (2005) Identification of ciliated sensory neuron-expressed genes in Caenorhabditis elegans using targeted pull-down of poly(A) tails. Genome Biol 6:R17. doi:10.1186/gb-2005-6-2-r17

    Article  PubMed  PubMed Central  Google Scholar 

  21. Zanin E, Dumont J, Gassmann R et al (2011) Affinity purification of protein complexes in C. elegans. Methods Cell Biol 106:289–322. doi:10.1016/B978-0-12-544172-8.00011-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Emmons SW (2005) Male development. In: Driscoll M, Murphy CT, The C. elegans Research Community (eds) WormBook. Retrieved from http://www.wormbook.org. doi:10.1895/wormbook.1.33.1

  23. Portman DS, Emmons SW (2000) The basic helix-loop-helix transcription factors LIN-32 and HLH-2 function together in multiple steps of a C. elegans neuronal sublineage. Development 127:5415–5426

    CAS  PubMed  Google Scholar 

  24. Mello C, Fire A (1995) DNA transformation. Methods Cell Biol 48:451–482

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI (Grant Numbers 22370097, 25291044) and MEXT KAKENHI (Grant Number 25111708) to S.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Takagi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Science+Business Media New York

About this protocol

Cite this protocol

Nukazuka, A., Takagi, S. (2017). Characterizing Semaphorin Signaling In Vivo Using C. elegans . In: Terman, J. (eds) Semaphorin Signaling. Methods in Molecular Biology, vol 1493. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-6448-2_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-6448-2_34

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-6446-8

  • Online ISBN: 978-1-4939-6448-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics